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Chapter 1

Summary

1.1 Overview

This section of the final report summarizes activities conducted as part of the Air Force Office of Sci-
entific Research STTR program on the development of high-bandwidth actuators. High bandwidth
allows use of the same actuator at various locations on an aircraft and over a range of flight speeds.
The actuator selected for bandwidth enhancement was the Powered Resonance Tube (PRT) actuator,
which is an adaptation of the Hartmann whistle. The device is capable of producing high frequency
and high amplitude pressure and velocity -perturbations for active flow control applications. The
program began with the development of a first-generation high-bandwidth actuator. The operation
and nearfield features of this actuator were characterized both experimentally and computationally
and an improved analytical theory was developed for the prediction of the frequency of actuation.
The detailed nearfield data provided information of the actuation signal directivity and its variation
with actuation frequency. One of the prototype actuators produces frequencies ranging from 1,600 to
15,000 Hz at amplitudes as high as 160 dB near the source. The computational work was conducted
at Reynolds numbers lower than that in the experiments, and established the Reynolds numbers
required to simulate details observed in the experiments. The analytical frequency prediction for-
mula overcame difficulties with the conventional quarter wavelength theory by accounting for the
compliance and mass of the fluid in the integration slot in the prediction of resonance frequencies of
the system, leading to improved predictions for the resonant frequency.

One of the goals of this project was to create a computer controlled high-bandwidth actuator. This
effort began with the creation of a computer look up table that was based on very detailed exper-
imental data (for various resonance tube depths, integration slot spacings and supply pressures).
The look up table approach was only partly successful in producing a reliable actuator, due to the
presence of jumps to higher modes, high frequency noise, and gaps in the resonance response curves.
To overcome these difficulties, a closed-loop feedback control system with multiple inputs and mul-
tiple outputs was developed. This approach produced a system that was able to provide actuation
signals at the prescribed frequency.

Towards the end of the program miniature PRT actuators were developed and applied to the tech-
nologically important problem of high-speed jet impingement noise suppression. The final efforts
of this program focused on creating a high-bandwidth actuator whose frequency range allows some
geometric flexibility of the design. This flexibility is accomplished by integrating the Helmholtz
resonator concept into an axial PRT resonator system. With such an approach one can get a wider
frequency variation within a given geometry constraint.




1.2 Introduction

High bandwidth actuation is essential for the effective application of Active Flow Control (AFC)
to improve the efficiency of both internal and external fluid flow systems. Successful application
to aircraft systems can produce lighter, more agile aircraft, with increased range and payload.
The design of an active flow control system requires knowledge of unsteady flow phenomena and
selection of appropriate actuators, sensors, and a control algorithm. The present effort focused on the
development of high-bandwidth actuators for active flow and noise control applications. It should
be noted that the powered resonance tube derives its name from the Hartmann resonance tube.
The term “powered” indicates that both “non-powered” (deriving energy from the free stream) and
“powered” (requiring secondary air) versions are possible. The term “bandwidth” refers to the range
of frequencies of effective operation. The goal of the current work was to demonstrate a powered
resonance tube that can generate strong tones over a frequency “bandwidth” of approximately one
order of magnitude, and is done as a part of the USAF’s program on “high bandwidth actuators.”
Thus, it should be noted that the term “bandwidth” is not intended to convey an instantaneous
output state but rather the range of conditions over which the device is applicable.

1.3 Background on Actuators

The basic actuator for this work is an extension of the Hartman resonance tube (also referred to as
the Hartman whistle). The resonance tube phenomenon was first described by Hartmann in 1918
(see [Hartmann and Troll, 1922], [Hartmann, 1931]). The Hartmann whistle apparatus consists of a
jet aimed at the open end of a tube that is closed at the other end. There are two phases during
the operation of this device. In the first phase, the jet penetrates the tube and compresses the air
within the tube. In the second phase, the compressed air in the tube empties itself. Under favorable
conditions the cycle perpetuates itself. However, fixed geometry actuators can produce effective
actuation only over a small range of frequencies. This poses a problem because one requires a new
actuator every time there is a change in geometric or fluid dynamic parameters. Extending ear-
lier fixed frequency efforts ([Raman et al., 2000], [Raman et al., 2001], {[Raman and Kibens, 2001],
[Kastner and Samimy, 2002]), the goal was to use the oscillatory pressures and velocities produced
by this device to design a high bandwidth actuator. Examples of possible applications include
the high frequency excitation for suppression of flow-induced resonance in weapons bay cavities
([Stanek et al., 2000]) and jet-ground impingement tones in STOVL aircraft.

1.4 Basic Behavior

In Figure 1.1 a prototype high bandwidth PRT is presented. Figure 1.2 shows a comparison of
experimental data with the original quarter-wavelength (QWL) theory and the new theory developed
in this program for the variation of actuator resonance frequency versus depth. In this report NPR
is defined as the ratio of the stagnation pressure to ambient pressure. The data of Figure 1.2 were
acquired at an NPR of 3.72 for various values of the spacing parameter (integration slot width or
jet to resonance tube spacing). The experimental data is generally grouped along a smooth curve,
except for a few data points showing a higher mode response.

The experimental data with a fundamental mode response is in good agreement with the refined
theory of [Kerschen, 2001] that considers the acoustic coupling of the resonance tube and the in-
tegration slot. The Kerschen theory accounts for the interaction of the resonance tube with the
integration slot; the compliance and mass of the fluid in the integration slot are incorporated into
the prediction. The prediction of this refined theory for an integration slot width equal to the sup-
ply jet diameter is shown in Figure 1.2. The refined theory is in much better agreement with the




Resonator Tube .
Housing Block Piston

Cylindrical Nozzle
Housing Block

Cylindrical Resonator

Tube

Jet

e N
3 e —————————

ILISIP 1T AL 05t

0,

[oeer| ) g

Piston
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Figure 1.2: Experimental data base of actuator frequency versus actuator depth is shown with
a reference simulation data point and the curve for the basic theory. New theoretical results of
Kerschen were obtained in this STTR effort and show improved agreement.

experimental data, remaining quite accurate even at small values of the tube depth. Essentially, for
small tube depths, the inertia of the fluid in the integration slot becomes important, significantly
reducing the resonance frequency relative to the prediction of the basic theory. The frequency versus
depth curve was also simulated numerically. Figure 1.5 shows a comparison of the numerical results
with those predicted by the new theory.

A detailed experimental data base was created by measuring the frequency and sound pressure level
at various tube depths and spacing parameters for a range of NPR values. The results are reported
in [Sarpotdar et al., 2005a]; some of the results will also be presented later in Chapter 2 of this
report.

From the data base reported in [Sarpotdar et al., 2005a], it is clear that there are only limited regions
of parameter space that produce high amplitude. Thus an effective computer-controlled actuator
would have to search for the correct integration slot spacing at each depth. In addition, the data
base shows a relationship between the theoretical shock spacing of a jet at the corresponding NPR
and integration slot spacing that produces the peak amplitude. The PRT device sometimes exhibits
jumps to higher modes or does not produce a stable resonance at all under some conditions. These
features and others shown by the data base would make a look up table ineffective.

Significant improvement was obtained by going to a feedback controlled Single Input Single Output
(SISO) system, and the performance of the system was enhanced further by going to a Multiple Input
Multiple Output (MIMO) system. [Sarpotdar et al., 2005a] shows the directivity of a PRT actuator
at different actuation frequencies. The directivity was observed to change as one progresses from
the fundamental frequency to the harmonics. In addition, it was noted that the directivity changed
from downstream to upstream (relative to the actuator supply jet direction) when the fundamental
actuation frequency was increased from 3 to 12 kHz. p,,,s plots indicate that the lobes fluctuate in
the strength as they shift upstream. Hence, if the target area is placed where the signal loses its
strength, the efficiency of the actuator may decrease. Thus, along with the orientation, the distance
between the actuator and the region where the signal is focused is also important.
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1.5 Simulation Studies

To explore the flow physics and better understand the mechanisms involved, direct numerical simu-
lations of the PRT flowfield were performed using the Wind flow solver, and its successor, Wind-US.
Wind (and Wind-US) is a general purpose Euler and Navier-Stokes Solver (see [Bush et al., 1998],
[Power and Underwood, 1999}, [Nelson and Power, 2001}, [Lankford and Nelson, 2002], and for Wind-
US, [Nelson et al., 2004]). The simulations provide details of the unsteady flow inside the actuator,
as well as features of the external acoustic radiation. Figures 1.2 and 1.3 demonstrate good compar-
isons between the simulation, experimental and theoretical results. Detailed results are presented in
Chapter 5 and have been published in [Cain et al., 20022}, [Cain et al., 2002b], [Cain et al., 2003a],
[Cain and Kerschen, 2003}, [Cain et al., 2004] and [Nelson et al., 2006].

An alternative problem formulation using slip-wall boundary conditions inside the PRT walls was
executed to gain further insight into the physics of this problem. The alternate formulation results
shows that under some conditions the initial oscillations decay to steady flow when the PRT walls
have a. slip-wall boundary condition (the fluid itself retains the same level of viscosity as the no-slip
wall calculations). For other conditions, the slip wall simulation results are essentially identical to
viscous wall simulations. Chapter 5 will discuss this point further.

The question of the behavior being affected by turbulence was examined by first conducting calcu-
lations that were laminar, and then re-calculating with the Mentor SST two-equation turbulence
model included. The results showed no effect of the turbulence model on tone frequency or amplitude
for the case examined. On the other hand, changing the Reynolds number was observed to have
significant effects. Calculations were first performed at a Reynolds number lowered by a factor of
490 (achieved by setting the freestream pressure to 0.03 psia) relative to the experiments performed
at Tllinois Institute of Technology. These computations match the primary tonal frequency and are
within about 3 dB in amplitude; however, they are very periodic at the fundamental tonal frequency
and show a nearly sinusoidal pressure signal. In contrast, simulations performed at a Reynolds
number reduced by a factor of 49 (achieved by setting the freestream pressure to 0.3 psia) relative
to the experiments show a somewhat more erratic pressure time trace, with more harmonic content,



and a “noisy” signal very similar to what is observed in the experiments.

1.6 Impinging Jet Acoustic Suppression Success

The suppression of jet impingement tones by high-frequency excitation of the jet shear layer using
Powered Resonance Tube (PRT) actuators was investigated. Subsonic jet Mach numbers were
considered. The work began by characterizing impingement tone staging behavior for a fixed Mach
number and various stand-off distances. Since the experiments involved variations in both the PRT
and impingement tone settings, they involved manipulation of a number of variables. Some of the
variables were acoustic in nature, whereas the others were flow related. Through careful experimental
and analytical studies the most significant variables responsible for the suppression weré identified.
The work also underlines the importance of high-frequency excitation by revealing the fact that,
for the same suppression level, selecting the optimal excitation frequency can reduce the required
actuator mass flow rate by almost 50%; as compared to non-tonal mass injection. The overall SPL
reduction observed in the subsonic impinging jet using the PRTs was as much as 12 dB. The study
reveals that impingement tones of certain frequencies were easier to suppress than other tones; the
conjecture is that this is related to the relationship between the stand-off distance and the natural
acoustic wavelength. Impingement tones for which the stand-off height matched the full acoustic
wavelength (h = A) were found to be more difficult to suppress than the miss-matched frequencies.
The results on this study of acoustic suppression in subsonic jets using PRTs are presented in greater
detail in Chapter 3 and in [Sarpotdar et al., 2005b).

1.7 The Helmholtz Theory

The Powered Resonance Tube (PRT) actuator is an effective device for producing high-amplitude
pressure oscillations; however, for low frequency applications the PRT actuator can be quite long
due to the quarter-wavelength (QWL) requirement. In order to reduce the actuator length, an
alternative design in which the QWL tube is replaced by a Helmholtz resonator is proposed. The
Helmholtz resonator has a narrow neck coupled to a backing cavity of larger diameter. The resonant
frequency is determined by the ratio of fluid stifiness in the backing cavity to fluid mass in the
neck; proper choice of geometry leads to an actuator length small compared to the length of a QWL
tube. A number of issues that are important in assessing the Helmholtz PRT actuator concept have
been addressed. These include the reductions in actuator length (or frequency), the capacity of the
resonator to absorb an unsteady volume flux, and the influences of dissipation and nonlinearity.

Two theories for Helmholtz resonator behavior were developed, the low-frequency theory and the
axial-wave theory. In both theories, the cross-sectional dimensions of the resonator neck and cavity
are assumed small compared to the acoustic wavelength. This allows transverse wave motion to
be ignored in the analysis, leading to significant simplifications. For the low-frequency theory, the
lengths of the neck and cavity are also assumed to be small compared to the acoustic wavelength,
while for the axial-wave theory these lengths may be on the order of the acoustic wavelength. The
low-frequency theory leads to simpler results than the axial wave theory, but has the disadvan-
tage that the transition from Helmholtz behavior to quarter-wavelength behavior is not accurately
represented, since the axial lengths are also assumed small compared to the acoustic wavelength.

Predictions for the non-dimensional resonance frequency § = wl/c as a function of the normalized
neck length [, /I are presented in Figure 1.4. Here, w is the resonance frequency, l,, is the “effective”
length of the neck including end corrections, [ is the length of the cavity, and | = I, + I, is the
total “effective” length of the resonator. The predictions shown in Figure 1.4 are based on the axial-
wave theory. Results for four values of the diameter ratio, d./d,= 2, 3, 4 and 5, are presented. For
I,/ = 0 or 1, the geometry reduces to a quarter-wavelength tube and the normalized frequency takes
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Figure 1.4: Non-dimensional resonance frequency 2 of a Helmholtz resonator, as a function of the
non-dimensional neck length I/l . The four curves correspond to d./d,= 2, 3, 4 and 5 (top curve
to bottom curve).

on the quarter-wavelength value 2 = 7/2. One can see that substantial reductions in the resonance
frequency are obtained for Helmholtz geometries in the range 0.2 < ,/l < 0.8. Additional features
of Helmholtz resonator behavior, including acoustic mode shapes and the capacity of the resonator
"to absorb an unsteady volume flux in the presence of an external pressure field, are discussed in
Chapter 6 and reported in [Kerschen et al., 2004].

1.8 Helmholtz PRT Simulations and Experiments

Numerical simulations and experiments for Helmholtz PRT actuators were also carried out. In
Figure 1.3, the resonance frequency obtained in a simulation is compared to analytical predictions of
varying degrees of sophistication. The low-frequency theory in the absence of neck end corrections
leads to the highest prediction for the resonance frequency. This prediction lies substantially above
the simulation point. The geometry considered in the simulations has a very short neck, so that
the end corrections substantially increase the effective mass in the neck, lowering the resonance
frequency. The low-frequency theory with neck end corrections lies just slightly above the simulation
point. Finally, for the parameter values in this case, the more refined axial-wave theory provides a
prediction that is slightly lower than the corresponding result from the low-frequency theory. The
prediction of the axial wave theory with neck end corrections is in very good agreement with the
result obtained from the numerical simulation.

A big picture comparison between the simulations and the theory for two different geometries is
presented in Table 1.1. The simulation data corresponds to a geometry with s/D = 1 (integration
slot width to supply jet diameter) and a Nozzle Pressure Ratio (NPR) of 3.52. The computational
grid contained 8 zones and somewhat over 100,000 cells. The simulation Reynolds numbers were
“low” for these cases (freestream pressure was 0.03 psia). The supply jet and Helmholtz neck diameter
were both 1/4” with a Helmholtz backing cavity diameter of 1/2”. The main points to be made from
the data in Table 1.1 are that in case 1, the Helmholtz response for the simulation corresponds very
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Figure 1.5: Comparison of the low frequency theory, low frequency theory with end corrections, axial
wave theory with end corrections and a numerical simulation result for a Helmholtz based, powered
resonance tube.

Table 1.1: Comparison of simulation versus theory for two geometries

Case # / Type of Data | Helmholtz Frequency | Screech Frequency
1 / Simulation 2,264 Hz-decaying Not observed
1 / Theory 2,210 Hz N/A
2 / Simulation 2,500Hz-decayed 15,454Hz dominant
2 / Theory 1,753 Hz 15,720 Hz

closely with the theory (no screech present), while in case 2 screech is present and the agreement
between theory and simulation is not nearly as close.

Additional information on the behavior of a Helmholtz PRT actuator is obtained from the simulation,
experimental, and theoretical results presented in Table 1.2. The data corresponds to an s/D = 2.
The simulation Reynolds numbers were “medium” for these cases (0.12 psia freestream pressure).
The supply jet and Helmholtz neck diameter were both 1/8” for these cases with a Helmholtz
backing cavity diameter of 1/4”. The most important conclusion from the data in Table 1.2 is
that the Helmholtz response predicted by theory is in reasonable agreement with experiment and
computation when screech is not present. However, increasing NPR above 3 decreases the likelihood
of a Helmholtz response and increases the likelihood of screech. Finally, the presence of screech
seems to shift the frequency of the Helmholtz response if it is present.

1.9 Miniaturized High Bandwidth PRT System

In addition to the development of a high-bandwidth PRT actuator, and a Helmholtz PRT actuator
for low frequencies, a prototype miniaturized high-bandwidth PRT actuator was also constructed.
It consists of three cylindrical actuators of identical outside dimensions. Each had a variable depth
by way of a movable piston and a constant area nozzle jet of the same diameter as the resonator




Table 1.2: Comparison of Simulation, Theory, and Experiment

Case # /type | NPR | Helmholtz freq | Screech freq Peak SPL

3 / Experiment 3 2,500 Hz Not observed 137 dB

3 / Simulation 3 1,964 Hz Not observed 142 dB
3 / Theory N/A 2,290 Hz Not calculated | Not predicted

4 / Experiment | 4.67 ~ 4,000 Hz ~18,000 Hz 137 dB

4 / Simulation | 4.67 ~2,700 ~17,500 Hz Not measured
4 / Theory N/A 2,290 Hz Not calculated | Not predicted

5 / Experiment 6 None observed ~14,000 Hz 139 dB

5 / Simulation 6 None observed.{ 718,000 Hz Not measured
5 / Theory N/A 2,290 Hz Not calculated | Not predicted
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Figure 1.6: The miniaturized quarter wavelength and Helmholtz PRT actuators and a close-up detail
of the Helmholtz resonator.

openings. The resonators were a 1/8” straight tube, a 1/16” straight tube, and a 1/16” x 1/8”
Helmholtz resonator. The 1/16” straight tube and Helmholtz resonators are detailed Figure 1.6.

A control program was written which used the data from an initial experimentally constructed
database to find a starting position of the actuator based on a target frequency and either the supply
pressure or minimum required SPL. The program would output the minimum supply pressure if a
minimum SPL was given. Then the spacing and depth were set to the position giving the maximum
SPL at that pressure and frequency from the data table. The spacing was varied iteratively to
maximize the SPL, then the depth was varied iteratively to tune the frequency to within 5Hz, which
was the frequency resolution of the FFT program. Both the low frequency and axial wave theories
with end corrections (reported in Chapter 6) fell within the range of the measured data. Chapter 7
describes the miniaturized powered resonance tube system in greater detail.




1.10 Graphical User Interface

A Microsoft Visual Basic based design too! has also been developed. The purpose of the tool
is to guide in the design of Helmholtz based PRT actuators. The software uses the axial wave
approximation described in Chapter 6 and provides both a forward mode (input the geometry and
calculate a resonance frequency) and an inverse mode (input the desired frequency and calculate a
proposed geometry). Chapter 8 describes the graphical user interface in greater detail.

1.11 Commercialization Efforts

From the beginning of the Phase II Program, many conversations as well as some face-to-face
meetings were conducted to explore possible commercialization of the PRT systems. Applications
considered included control of combustion instability, suppression of jet impingement noise, and
elimination of jet screech. There were positive responses on several occasions, but unfortunately
concrete steps forward have yet to occur. Companies with whom potential commercialization was
discussed include Honeywell, Pratt, UTRC, and Rolls Royce.



Chapter 2

Development and Study of an Initial
Prototype

2.1 Overview

High bandwidth actuation is essential for the effective application of Active Flow Control (AFC)
"to improve the efficiency of systems that involve both internal and external fluid flow. Successful
application to aircraft systems can produce lighter, agile aircraft with increased range, payload and
reduced noise. The design of an active flow control system requires knowledge of flow phenomena
and selection of appropriate actuators, sensors, and a control algorithm. The present paper focuses
on the development of high bandwidth actuators for active flow and noise control applications. It
should be noted that the powered resonance tube derives its name from the Hartmann resonance
tube. The term “powered” indicates that both “unpowered” (deriving energy from the free stream)
and “powered” (requiring secondary air) versions are possible. The term “bandwidth” refers to
the range of frequencies of effective operation. The goal was to demonstrate a powered resonance
tube that can generate strong tones over a frequency “bandwidth” of approximately one order of
magnitude, and is done as a part of the USAF’s program on “high bandwidth actuators.” Thus, it
should be noted that the term “bandwidth” is not intended to convey an instantaneous output state
but rather the range of conditions over which the device is applicable.

AFC techniques can be separated into two classes based on flow physics [Cain et al., 2001]. The first
class (AFC-I) involves the use of unsteady forcing to excite instability waves of laminar flows, or the
large scale structures of turbulent flows. AFC-I techniques have been explored extensively in the past
decade (see [Kral, 1999] and [Gad-el Hak, 2000]). The second class (AFC-II), has been developed
more recently and involves the use of actuators to force turbulent boundary and free-shear layers
at frequencies higher than the amplified instabilities of the base flow (see [Wiltse and Glezer, 1993}
and [Cain et al., 2001]). The quest for a high bandwidth actuator is preceded by the recognition
that the two classes of AFC have different bandwidth requirements, as discussed below.

To apply AFC across the full operating envelope of an air vehicle, actuators with high bandwidth and
large dynamic range are required. To illustrate this consider the actuator bandwidth requirements for
a military transonic air vehicle. For this illustration it is assumed that the minimum and maximum
speeds of interest for tactical military aircraft differ by a factor of eight. It is also assumed that the
streamwise locations of interest for actuators vary by a factor of eight. Further reasoning is based on
an estimate of the boundary layer thickness, which for laminar boundary layers scales with the square
root of the downstream distance, z and the inverse square root of the flow speed u. The thickness
of the turbulent boundary layer scales roughly with the 6/7 power of the downstream distance, z
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and the 1/7 power of the flow speed, u. AFC-I techniques have more stringent requirements and the
actuator must produce an unsteady flow disturbance at a frequency that is near the frequency of
the naturally occurring instability waves or large-scale structures. The required frequency scales as
f o< ud/2. Thus, for a laminar boundary layer one obtains f « u3/2z, while for a turbulent boundary
layer one obtains f o< u®/7x /7, Now consider an actuator on a fixed location on a vehicle. In order
for the actuator to be effective for AFC-I over a speed range of 8, a bandwidth range of 8%/2 ~ 23
would be required for a laminar boundary layer, while a bandwidth range of 8%/7 ~ 11 would be
required for a turbulent boundary layer. In reality the laminar scaling overestimates the requirement
in many situations, since one would anticipate a significant shift in transition location over a speed
range of 8. Thus, for AFC-I techniques, a reasonable estimate for the desired bandwidth range for
an actuator at a fixed location is, say 16. One can also consider the possibility of AFC-I applications
using the same actuator at all locations on a vehicle. In this case, the desired bandwidth range
increases to 64, for both laminar and turbulent cases.

AFC-II techniques involve excitation of disturbances at frequencies somewhat higher than that
of the amplified modes of the turbulent boundary layer or free-shear layer. Here the bandwidth
requirements are more modest. The instability modes or large-scale structures that respond to
excitation from AFC-I have a limited frequency band (at a given point in the boundary or free shear
layer). It is only necessary to force the turbulent flow at some frequency somewhat above this range.
Therefore for AFC-II techniques, the possibility of effecting ﬁow control using the same actuator at
a variety of locations on a vehicle appears realistic.

2.2 Background on Actuators

Several innovative flow control techniques have emerged in recent years. Among these are piezo-
electric actuators, zero mass flux actuators [Wiltse and Glezer, 1993, Wiltse and Glezer, 1998] and
fluidic actuators. However, the above types of actuators are suited more for laboratory experi-
ments. In full scale flight applications they can prove to be fragile and have significant power and
maintenance requirements, and may not be able to provide the necessary bandwidth.

The actuator developed for the current work is based on the Hartmann resonance tube (also referred
to as the Hartmann whistle). The resonance tube phenomenon was first described by Hartmann
in 1918 (see [Hartmann and Troll, 1922] and [Hartmann, 1931]). The Hartmann whistle apparatus
consists of a jet aimed at the open end of a tube which is closed at the other end. There are two phases
during the operation of this device. In the first phase, the jet penetrates the tube and compresses
the air within the tube. In the second phase the compressed air in the tube empties itself. Under
favorable conditions the cycle perpetuates itself. However, fixed geometry actuators can only produce
effective actuation over a small range of frequencies. This poses a problem because a new actuator
is required every time there is a change in geometric or fluid dynamic parameters. Extending earlier
fixed frequency efforts ([Raman et al., 2000}, [Raman et al., 2001}, [Raman and Kibens, 2001]), the
goal was to use the oscillatory pressures and velocities produced by this device to design a high
bandwidth actuator. Examples of possible applications include the high frequency excitation for
suppression of flow induced resonance in weapons bay cavities ([Cain, 1997], [Raman et al., 2001],
[Raman et al., 2000], [Stanek et al., 2000], and [Stanek, 2005]) and jet-ground impingement tones in
STOVL aircraft.

The phenomena associated with such resonance tubes has been studied by several researchers in-
cluding [Thompson et al., 1992] and [Brocher et al., 1970}. The resonance frequency was proposed
by [Brocher et al., 1970} to be equal to approximately the acoustic frequency f = c/ (4l + ecf),
where f is the resonance frequency, ¢ is the ambient speed of sound, ! is the length of the tube,
and ecf is the end correction factor. Note that the frequency of excitation produced by this de-
vice depends primarily on its depth. Secondary factors that can alter frequency include the nozzle




pressure ratio of the supply nozzle and the spacing between the jet exit and the open end of the res-
onance tube. A variation of the Hartmann tube known as the Hartmann-Sprenger tube was studied
by [Iwamoto, 1990] and [Iwamoto and Deckker, 1985]. [Wilson, 1958] and [Wilson and Resler, 1959]
studied a glass resonance tube using pulsed Schlieren photography. Wilson’s work documents the
movement of waves within the tube during the compression and evacuation phases within the tube
and also documents the temperature variations at the closed end of the tube.

2.3 Benefits of High Frequency Excitation

An additional motivation to develop a high bandwidth PRT is due to the benefits of using high
frequency excitation (AFC-II) for control applications. High frequency excitation (AFC-II) departs
from the conventional philosophy (AFC-I) of exciting the shear layer only within the range of fre-
quencies where the large scale structures (see [Kibens, 1980]) are amplified. The rationale in the
conventional excitation approach (AFC-I) was to energize the large structures that in turn enhance
mixing. In contrast, when frequencies higher than the amplified large scale range are excited, changes
in the development of the large scales and the mean flow can occur (see [Wiltse and Glezer, 1993]).
An important consequence of the high frequency excitation is that the direct addition of shorter
scales apparently accelerates the dynamics of energy cascade across a broad range of wave num-
bers. In situations involving resonant acoustics, low frequency excitation reduces the amplitude of
resonant tones by detuning the feedback loop. On the other hand, high frequency excitation may
destroy the organization in the initial shear layer that is necessary to sustain flow induced resonance.
Typically, the use of low frequency excitation (in the range of naturally amplified flow instabilities)
results in the suppression of some modes and is generally accompanied by the augmentation of some
other modes. In contrast, high frequency excitation (AFC-II) has the capability of eliminating all
tones present, as well as reducing the broadband sound, in a cavity in subsonic or supersonic flight.
The ability to suppress all tones is especially important in situations where the resonant frequencies
are difficult to anticipate. For example, in the work of [Raman et al., 1999] on jet-cavity interactions
two types of tones were observed. The first type was described by H = 0.3nM; 2 for n = 1,2,3,
where H is the Helmholtz number given by fl/c, where f is the frequency, ! the cavity length,
and c the speed of the sound. The second type of tone can be approximated by the relationship
H = (n+1)/4 for n = 1,2,3. The former type resembles the Rossiter modes whereas the latter
type is independent of cavity length (note that the classical Rossiter modes may occur only in ide-
alized laboratory experiments). The point here is that with conventional low frequency excitation
one needs to know the frequencies of the tones that are expected under various conditions. High
frequency excitation has the potential to suppress all flow induced resonances and does not require
detailed knowledge of the frequencies of tones present under various conditions.

2.4 Objective for Prototype Broadband Actuator Develop-
ment

For the current work, the approach for developing a prototype high bandwidth actuator consisted
of first selecting a candidate actuator and then devising a method to extend its bandwidth. This
search for an actuator revealed that excitation devices that produced high amplitude signals gener-
ally leveraged a resonance mechanism. Examples are piezoelectric elements mounted on structural
members, and devices that exhibit aeroacoustic resonance. The former type of actuator (piezoelec-
tric) was considered briefly but was dropped in favor of the latter type (aeroacoustic). The actuator
selected for bandwidth enhancement was the Powered Resonance Tube (PRT) actuator, which is
capable of producing high frequency and high amplitude oscillations.
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Figure 2.1: Schematic diagram showing an axisymmetric Powered Resonance Tube (PRT). The
supply jet is on the left hand side and the resonance tube is on the right. The gap between the two
is referred to as the “integration slot.”

The frequency produced can be approximately represented by the quarter wavelength frequency
of a tube that is closed at one end. First, it was demonstrated that high bandwidth could be
produced by manually varying the depth of the PRT. This was followed by a more refined effort
using a computer controlled mechanism that varied the depth of the tube in response to user selected
frequencies. These efforts were successful in obtaining an order of magnitude variation in frequency
with a significant dynamic range. Specific objectives are listed below: -

¢ Characterize the unsteady actuation signals produced by the PRT device in the nearfield.
e Develop and demonstrate high bandwidth capability.

e Begin with a Look Up Table (LUT) approach and proceed to demonstrate Single Input Single
Output (SISO) and Multi Input Multi Output (MIMO) feedback control of the actuator.

2.5 Powered Resonance Tube Development

Figure 2.1 shows a schematic of a single powered resonance tube. The supply jet is seen on the left
hand side and the resonance tube on the right hand side. Previous work has focused on two versions
of the resonance tube. The original version used an under-expanded sonic jet containing a shock
train. In the second version [Brocher et al., 1970] demonstrated that a “wake producing” cylinder
laid along the jet axis allows the full oscillation amplitude to be achieved for ideally expanded
supersonic jets. [Hartmann, 1931}, [Wilson, 1958] and [Brocher et al., 1970] have pointed out that
the former version is very sensitive to spacing between the jet and mouth of the resonance tube.
This is because the expanding region of the jet is a stable region for a shock present in the flow,
whereas the converging region is unstable, so that the shock will not remain there.

For a resonance tube to operate, the spacing between the nozzle exit and the tube mouth should be
such that it positions the shock in the unstable region. When the shock is in the unstable region it is
strongly affected by downstream conditions and will readily oscillate. The desired spacing between
the nozzle exit and the resonance tube depends on the shock cell dimensions that are determined by
the supply pressure. This explains the sensitivity to both spacing and supply pressure. In contrast,
in the latter version, the jet is ideally expanded and has no shock cells. However, the sting does
generate oscillations with a lower sensitivity to the pressure and spacing. This work demonstrates
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that using a properly designed control system even the former version of the resonance tube can
produce oscillations consistently. A similar control system is expected to function quite easily for
the latter version of the device. Note that although the latter version is less sensitive to supply
pressure and spacing it still needs fine tuning to produce the maximum amplitude. The frequency
of the resonance depends only on the depth of the tube for subsonic or ideally expanded supersonic
jets. The distance between the supply jet and the resonance tube determines the efficiency of this
process. The mass flow requirements depend on the diameter of the supply jet and typically range
from 0.01 kg/sec to 0.15 kg/sec for tubes with diameters ranging from 1/16” to 1/4”.

Although the Hartmann tube has been known for many years it has never been used before as an
active flow control actuator. [Raman et al., 2000] demonstrated its potential for use as an AFC
actuator. However, the demonstrator was not snitable for use as an actuator since the flow spilled
out circumferentially in all directions. For effective actuation a device that can inject perturbations
into a flow efficiently is desired. At the beginning of integration efforts a semi-circular shroud was
used. The shroud or shield (when applied properly) did not alter the effectiveness of the resonance
tube phenomenon. Two generations (Gen-I and Gen-II) of a more complex version of this device
were developed. The Gen I type actuator, which was designed to integrate with the weapons bay
cavity at DERA (UK), was described by [Raman et al., 2001] and [Raman and Kibens, 2001] and
will only be briefly mentioned herein. The actuator consisted of a flow conditioned plenum fed by a
high pressure air line. The flow exited the plenum through seven supersonic (CD) nozzles with an
exit diameter of 0.635 cm and a design Mach number of 2. The seven jet nozzles were aimed at a
block containing seven resonance tubes with a diameter of 0.635 cm and a depth of 1.27 cm. An
axial needle was present at the center of each of the jet nozzles. The needle enhances the operation of
these nozzles at supersonic Mach numbers as originally proposed by [Brocher et al., 1970] to prevent
cessation of oscillations for certain conditions. Also present in the actuator is a scalloped plate spacer
between the supply jet and the resonance tube. [Stanek et al., 2000] describe the results from the
cavity noise suppression experiments in the UK. The device suppressed cavity tones by 29 dB at
M =1.19.

A second generation device (Gen-II) was built to integrate with the jet impingement apparatus at
Boeing Saint Louis. The Gen-II actuator could switch between 7 and 15 powered resonance tubes
and had a bleed facility at the rear that allowed the mass flow to be varied. This actuator was
successful in suppressing impingement tones (see [Raman and Kibens, 2001]).

2.6 Initiation of Experiments

2.6.1 Setup

The experimental set-up was shown in Figure 1.1. It consists of a 0.635 cm diameter jet with a
chamfered exit facing the open end of the resonance tube that is closed at the other end. Note that
the chamfer was necessary for the production of high amplitude oscillations. A piston fitted inside
the tube changes the tube depth. The piston has an O-ring built in to prevent leakage of air. This
setup was used as a prototype to test the parameters of the powered resonance tube. The piston
remained fixed while the resonance tube slid over it to change tube depth. The distance between the
jet and the tube (gap), referred to as the “spacing parameter” or “spacing” was changed by computer
control to examine its effect on both the frequency and the amplitude of the sound. Microphones
and pressure sensors at various locations in the vicinity of the actuator were used to measure the
frequency and amplitude of the fluctuations produced by this device. The power spectrum of the
acoustic signal was computed for various resonance tube depths and jet-to-resonance-tube spacings.
A computer controlled traversing mechanism moved both the piston (for changing depth) and the
supply jet for changing the spacing (tuning). Next, a detailed experimental database was generated
that was used as a lookup table in early computer controlled experiments.
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Table 2.1: Frequency error analysis measurements for the PRT

Frequency (kHz)
Asc. Des. Asc. Des. Asc. Des. Asc. Des. Asc. Des. Asc. Des.
d/D Asc.® Des.’ run run run run run run run run Mean Mean o o
runl runl 2 2 3 3 4 4 5 5

0.8 9.844 9.756 9.820 9.756 9.828 9.784 9.860 9.780 9.860 9.780 9.842 9.771 0.02 0.01
1.2 7.764 7.692 7.760 7.704 7.768 7.700 7.772 7.704 7.780 7.708 7.769 7.702 0.01 0.01
1.6 6.472 6.440 6.472 6.444 6.476 6.452 6.492 6.452 6.492 6.452 6.481 6.448 0.01 0.01
2.0 5.188 5.176 5.180 5.176 5.180 5.216 5.220 5.208 5.212 5.200 5.196 5.195 0.02 0.02
2.4 4.260 4.236 4.256 4.240 4.260 4.240 4.260 4.240 4.264 4.240 4.260 4.239 0.00 0.00
2.8 3.680 3.672 3.684 3.676 3.684 3.672 3.692 3.672 3.696 3.680 3.687 3.674 0.01 0.00
3.2 3.308 3.304 3.308 3.304 3.312 3.300 3.308 3.304 3.324 3.304 3.312 3.303 0.01 0.00
3.6 3.008 2.992 3.008 2.996 3.008 2.996 3.008 2.996 3.012 3.000 3.009 2.996 0.00 0.00
4.0 2.756 2.744 2.756 2.744 2.760 2.752 2.756 2.756 2.760 2.756 2.758 2.750 0.00 0.01
44 2540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 2.540 0.00 0.00

2Asc.: ascending order
bDes.: descending order

2.6.2 Error analysis

There are two types of errors: external and internal. The former is based on knowledge of the
accuracy of the instrumentation, while the latter is based on the data and repeatability of the
experiment. For the microphone measurement, the only available information is the precision of the
microphone. The precision of the microphone provided by the manufacturer is 0.5 dB which results
in a microphone measurement error of +1 dB based on a zero order estimate, for the frequency
range from 0-10 kHz. For the Kulite pressure transducer, the calibration sheet provided states
that the error is less than +3%. To state the external errors a statistical analysis of the data was
needed. Hence numerous measurements were conducted on the powered resonance tube to establish
the uncertainty, validate the data, and study the repeatability of the experiment. A major objective
was to show that the phenomenon is stationary with the variation of the resonance amplitude and
frequency within an acceptable range. This evaluation was represented by a statistically estimated
standard deviation o then using a 95% confidence interval of 20. These measurements are tabulated
in Tables 2.1 and 2.3. From Table 2.1 it can be seen that the frequency error is less than 40 Hz for
each case of ascending and descending order with a 70 Hz hysteresis error. While from Table 2.3 it
can be seen that the sound pressure level error is 2.24 dB with a hysteresis error of 3.8 dB.

2.7 Experimental Results

2.7.1 Frequency and Amplitude Characteristics

Figure 2.2(a) shows the variation of actuator resonance frequency versus depth. In this report NPR
is defined as the ratio of the stagnation pressure to ambient pressure. The data of Figure 2.2(a)
were acquired at an NPR of 3.72 for various values of the spacing parameter (integration slot width
or jet to resonance tube spacing). Two theoretical predictions of the resonance frequency are also
shown in Figure 2.2(a). The basic theory is the standard quarter wavelength resonance frequency
(QWL), for an open-closed resonance tube. The experimental data is in good agreement with the
basic theory for long tube depths, but gradually diverges from the basic theory as the depth of
the resonance tube decreases. In order to develop a better understanding of this behavior, a refined
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Table 2.3: Amplitude error analysis measurements for PRT
SPL (dB)
Asc. Des. Asc. Des. Asc. Des. Asc. Des. Asc. Des. Asc. Des.
d/D Asc.® Des.? run run run run run run run run Mean Mean o o
runl runl 2 2 3 3 4 4 5 5

0.8 148 147 148 147 148 146 148 147 148 148 148.0 146.6 0.00 0.55
1.2 147 151 148 151 148 151 148 151 148 151 147.8 151.0 0.45 0.00
1.6 1556 153 155 153 1556 1562 156 154 155 153 155.2 153.0 0.45 0.71
2.0 148 144 149 145 148 145 149 144 149 146 148.6 144.8 0.55 0.84
24 153 149 153 150 154 150 153 150 153 150 153.2 149.8 0.45 0.45
2.8 152 148 150 149 149 149 151 150 151 149 150.6 149.0 1.14 0.71
3.2 141 139 140 138 142 140 143 139 141 139 1414 139.0 114 0.71
3.6 144 146 145 147 146 147 145 148 144 147 1448 1470 0.84 0.55
4.0 147 143 148 145 145 144 146 145 147 143 146.6 144.2 1.14 1.00
44 143 144 143 143 144 143 143 144 143 144 143.2 1436 0.45 0.55

“Asc.: ascending order
bDes.: descending order

theory was developed [Kerschen, 2001] that considers the acoustic coupling of the resonance tube and
the integration slot. The Kerschen theory accounts for the interaction of the resonance tube with the
integration slot, and the compliance and mass of the fluid in the integration slot are incorporated
into the prediction. The prediction of this refined theory for an integration slot width of s/D is
shown in Figure 2.2(a). The refined theory is in much better agreement with the experimental data,
remaining quite accurate even at small values of the tube depth. Essentially, for small tube depths,
the inertia of the fluid in the integration slot becomes important, significantly reducing the resonance
frequency relative to the prediction of the basic theory.

Many numerical simulations of the PRT actuator have been carried out. One reference case was
shown in Figure 2.2(a) for a tube depth of [/D = 1.5, an integration slot width of /D =1, and a
supply NPR of 3.5. Details of the simulation are discussed in a later section. A single result from
the numerical simulations is used for comparison with the experimental results in Figure 2.2(a).
The resonance frequency obtained in the simulation (f = 7.6 kHz) is also shown in Figure 2.2(a).
The result is seen to be in good agreement with the experimental data and refined theory. The
simulation also predicts the amplitude of the resonance. Accounting for the pressure scaling (to be
discussed), the simulation result corresponds to an amplitude of 160 dB, in fairly good agreement
with the laboratory value of 157 dB. Other simulation results are shown later in the report and also
correspond well with the experiments.

Note that in these experiments the frequency could be changed from 14 kHz to about 1.6 kHz
and amplitude varied from 137 dB to 160 dB. A documentation of the amplitude of sound at a
nearfield microphone location (0.635 cm away from the PRT) with varying resonance tube depth
(various frequencies) is provided in Figure 2.2(b). A detailed experimental data base was created by
measuring the frequency and sound pressure level at various tube depths and spacing parameters for
arange of NPR values (see Figures 2.3 and 2.4). The resonance tube database consisted of measured
frequencies at various depths. The frequency was measured for depths ranging from /D of 0.4 to
1.6 in steps of 0.2 [/D. From [/D of 1.6 to 4.4 a depth increment of 0.4 I/D was used. The spacing
between the supply jet and the resonance tube was varied from s/D of 0.4 to 2.8 in steps of 0.254
cm. The database covered a supply pressure range from NPR = 2.89 to 3.93 in 6 equal increments.
Thus, there were 686 data points describing the behavior of the resonance tube at various depths,
spacings and pressures. From Figure 2.3 it is clear that on each plane there are limited regions of
high amplitude. Thus an effective computer controlled actuator would have to search for the correct
integration slot spacing at each depth.
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Figure 2.2: Frequency and amplitude characteristics of Powered Resonance Tubes (PRTs) at an
NPR of 3.72 (NPR_ Standard = 1.15 NPR).
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Figure 2.3: Three dimensional map of actuation sound pressure levels for various values of the
spacing parameter (jet-to-resonance tube), supply pressure and tube depth. (NPR_Standard =
1.15 NPR).
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Figure 2.4: Iso-surface extracted from three dimensional map of Figure 2.3. The 140 dB iso-surface
represents the acceptable target amplitude for effective actuation. (NPR_Standard = 1.15 NPR).
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Figure 2.5: Hysteresis errors in frequency and sound pressure level with increasing and decreasing
depth

The amplitude of actuation is characterized using metrics from linear acoustic theory such as
acoustic power, W. This is derived from the Sound Pressure Level (SPL) as follows: SPL =
20108, (Drms/Pres) Where pres = 20 pPa. The acoustic power W = (pZ,,,/cpo) 47R?, where R
is the distance from the microphone to the resonance tube, pp is the density of air (1.21kg/m?),
and c is the ambient speed of sound (343m/s). The metric described above is subject to several
assumptions (including spherical radiation of sound into open space). The usefulness of the sound
power metric is that it eliminates the microphone location as a parameter (sound pressure level
depends on the microphone location but the sound power is a characteristic of the source that is
independent of microphone location). The acoustic efficiency of this device was calculated by taking
the ratio of output power to input power. Input power is given by the product of supply pressure
and volume flow rate. Qutput power was measured using a Kulite probe that was moved to the
opening of the integration slot. At this location the Kulite sensor recorded a level of 169 dB. The
acoustic efficiency was found to be 9% if one considers the RMS level integrated over the entire
spectrum and 6.85% if one only considers energy concentrated at the resonance frequency.

This database is then used to generate a look up table program for controlling the resonance tube
such that the desired frequency is obtained at the highest amplitude. A Visual BASIC program was
written in order to implement the look-up table database. The traversing mechanism was calibrated
before generating the look up table program. When a desired frequency is input to the program
it calculated the depth and moved the piston to the appropriate depth. Figures 2.5 and 2.6 depict
the frequency variations when the tube depth is changed including the effect of hysteresis. The
fundamental frequency (lowest curve) is tabulated and analyzed for errors in Tables 2.1 and 2.3.
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Figure 2.6: Spectra at various resonance tube depths. (a) Decreasing depth. (b) Increasing depth.
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Figure 2.7: Pressure time series from externally located microphone and from pressure transducer
at the closed end of the tube at various frequencies. (a) 2.5 kHz. (b) 5 kHz. (c) 9 kHz.

2.7.2 Pressure Measurements within the PRT

Flow visualization experiments conducted by [Kastner and Samimy, 2002] have revealed some very
interesting visual features of PRT actuators. However, a detailed characterization of unsteady pres-
sures in the nearfield is desired and this is one of the objectives of the present work. Figure 2.7
shows pressure time traces from sensors located internal and external to the tube. Measurements
within and outside the tube were made at PRT operating frequencies of 2.5, 5 and 9 kHz. It should
be mentioned that the time segment for the three parts is the same; 0.0011s, which explains the
increase in number of cycles as the frequency increase. From Figure 2.7 it can be seen that for all
the frequencies, the shape of the pressure inside the tube was the same. For the 2.5 kHz case shown
in Figure 2.7(a) the pressure increases from -1,000 Pa to 61,000 Pa in 56 us (14% of cycle time),
stays at 61,000 Pa for 216 us (55% of cycle time) and decays back to -1,000 Pa in 122 us. (31% of
cycle time) The total time is 394 ps after which the whole cycle repeats itself again. In the case of
the 5 kHz tone shown in Figure 2.7(b) the pressure rises from -13,000 Pa. to 61,000 Pa in 40 us (19%
of cycle time), stays at 61,000 Pa for 102 us (49% of cycle time) and then goes down to -13,000 Pa
in 122 us (32% of cycle time) with a total cycle time of 264 us. Finally, for the 9 kHz case shown in
Figure 2.7(c) the pressure rises from -12000 Pa to 61,000 Pa in 34 us (28% of cycle time), stays at
61,000 Pa for 42 us (35% of cycle time) and then drops to -12,000 Pa in 45 us (37% of cycle time)
with a total cycle time of 121 us. From the shape of the time series in all cases, it can be seen that
the pressure time series inside the tube has a very regular shape. In contrast, the microphone signal
is not very regular, possibly because of the reflections of sound in the near field by the traverse
mechanism and supporting table.
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Table 2.4: The Calculated Velocities of the Compression and Expansion Waves.

Case t rise Velocity Mach t slew Velocity Mach
ws) | (/s) no. | (us) | (f¢/s) no.
2.5 kHz 56 1785.71 1.64835 122 819.672 0.75662
5 kHz 40 1041.67 0.96154 68 612.745 0.56561
9 kHz 34 612.745 0.56561 45 462.963 0.42735

The nonlinear effects within the resonance tube are clearly illustrated by the results of Figure 2.7.
By examining the pressures within the tube it is found that in general, the dwell time is around
50% of the total cycle time and the rise time is less than the slew time. The rise time represents
the time needed for the compression wave to travel in the tube and the slew time is the time needed
for the expansion wave to travel out of the tube. By knowing these two facts, it is clear that the
compression wave travels faster than the expansion wave.

The Quarter Wavelength Theory assumes that all the waves (compression, reflected compression,
expansion and reflected expansion) are Mach waves and travel with the local speed of sound and
the flow velocity in the tube is negligible. To examine this further, the velocity of the compression
and expansion waves for each case were calculated and are given in Table 2.4. It can be seen that
the velocity of the compression wave is higher than that of the expansion wave and as the frequency
increases (depth decreases) the velocity decreases for both compression and expansion waves. In
addition, the compression wave velocity is higher than the speed of sound. At 9 kHz the calculated
velocities for both compression and expansion waves are less than the speed of sound. The time trace
measured within the tube displays a longer dwell time at high pressures alternating with shorter
dwell times at low pressures. In contrast, for the time trace measured outside the tube the dwell
times are indistinguishable.

2.7.3 Detailed Characterization of the Nearfield

The nearfield data shown in Figures 2.8 and 2.9 represent the y — z and z — y planes I and II (see
Figure 1.1). The data for planes I and II were obtained by traversing a Kulite sensor over the entire
nearfield. Part (a) of Figures 2.8 and 2.9 shows the total RMS pressure signal integrated over the
entire spectrum. Part (b) represents the pressure levels at the actuation frequency and (c) represents
the phase relative to a second fixed sensor. Note that the propagation of the wave is normal to the
phase front.

The data shown in Figures 2.8 and 2.9 reveal some very interesting features. In the transverse plane
(z — y, Figure 2.8) the actuation signal exhibits two distinct lobes caused perhaps by a transverse
flapping mode instability (this flapping instability appears to prefer the transverse direction over
the vertical direction where the jet is constrained at the bottom). The phase data exhibit isotropy.
Figure 2.9 represents data in the axial plane (y — z) and shows that the actuation is biased in the
upstream direction (relative to the direction of the supply jet). This finding is significant and may
determine the deployment configuration of the actuator. For example, with the free stream going
from left to right, one may want to have the actuation opposing the free stream in a counterflow like
fashion for jet mixing enhancement applications or alternatively choose a co-flowing arrangement as
in directed synthetic jets. The directivity of the PRT on the y — z plane is shown in Figure 2.10.
Detailed phase averaged data are shown in Figures 2.11 and 2.12 for the £ — y and y — 2 planes (],
I).

The measurements were made by moving a sensor over the entire nearfield (see measurement grid
in each figure) and using a second reference sensor as a trigger for phase-averaging. Phase averaged
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Figure 2.8: Time-averaged features in the near field on the z — y plane (I & II). (a) RMS pressure
levels. (b) Sound pressure levels at actuation frequency. (c) Relative phase (degrees). NPR = 3.38
(NPR_Standard = 1.15 NPR), s/D=1and /D =1.

25




SPL (dB)
172
166
161
157
146
1 132
123
114

Phase (deg)
55§

420
285
150
- BB

120
1 255
-390

Figure 2.9: Time-averaged features in the near field on the y — z plane (I & II). (a) RMS pressure
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data were acquired at an operating NPR of 3.5, s/D = 1 spacing and an operational frequency of 9
kHz (I/D = 0.92) with a sampling frequency of 200 kHz. The reference microphone was band pass
filtered (between 8kHz and 10kHz) and the probe signal was analog low pass filtered at 16 kHz prior
to sampling; its purpose is to remove high-frequency components that would otherwise be aliased,
or folded down to lower frequencies. Data were ensemble averaged over 100 oscillation cycles. The
phase difference from frame-to-frame is 36 degrees. By comparing the phase averaged information
of Figure 2.11 to the time averaged picture of Figure 2.8 one can see how the dual lobes emerge on
averaging over time.

2.8 Initial Simulation Studies

In this section a few examples of simulations of the PRT actuator are discussed. Later, in Chapter
5, much more information and more examples on the simulations will be given. Here the formulation
of the computational problem and numerical method are summarized followed by a discussion of a
few key results and physical insights

To explore the flow physics and better understand mechanisms, direct numerical simulations of
the resonance tube’s flowfield were performed using the Wind flow solver (and Wind-US, its suc-
cessor code). Wind(-US) is a general purpose Euler and Navier-Stokes Solver (see [Bush et al., 1998],
[Power and Underwood, 1999], [Nelson and Power, 2001}, [Lankford and Nelson, 2002}, and, for Wind-
US, [Nelson et al., 2004]). The simulations provide details of the unsteady flow inside the actuator,
as well as features of external acoustic radiation. Final solutions were obtained using the Wind code
with a third order spatial scheme and third order Runge-Kutta time integration. Although the work
of [Cain and Bower, 1995] suggests the use of a fifth order scheme may be the best option available
in the Wind code, the presence of a strong oscillating shock and internal zone boundaries makes
the third order scheme advantageous in this application. To minimize the issue of outer boundary
reflections “buffer zones” were used with added numerical damping in these buffer regions only. Grid
refinement and algorithm studies suggest that the present results are invariant to grid and algorithm
for modest changes.

The geometry tested in the laboratory had a number of complexities that would require an unrea-
sonably large grid and enormous computational resources to simulate. In order to do meaningful
simulations with modest computational resource requirements, simplifying approximations are re-
quired. The first such approximation was to assume an axisymmetric geometry and flowfield. The
second approximation was a reduced Reynolds number. These two simulations permit direct numer-
ical simulations with a modest grid.

The basic geometry for the computation consists of a supply tube feeding the integration slot and
resonance tube, and an axisymmetric far field. The supply tube has a 1.27 cm diameter at the
reservoir, tapers conically to a 0.635 cm diameter constant section, and then has a brief flare into
the integration slot. The conical section and the constant diameter section are both 1.27 cm long.
The grid in the supply tube, integration slot, and resonance tube has nominally square cells roughly
0.01575 cm on a side. In the farfield the cell size gradually expands from 0.01575 cm to roughly
0.254 cm on a side. Thus, there are roughly 280 cells per acoustic wavelength in the supply tube,
integration slot and resonance tube, and at least 16 cells per wavelength at the far edges of the outer
grid.

A typical sound radiation field, characterized by the far field, is shown in Figure 2.13. The simulation
shown in Figure 2.13 is based on viscous no-slip boundary conditions, which will be shown to be
very important. The fields in Figure 2.13(a-c) are snapshots spanning approximately one period of
oscillation, after the calculation has advanced 31,400 timesteps. At this point in the calculation the
field has advanced approximately 16 periods of the basic 7.6 kHz resonance. In the first wavelength
(approximately 4.445 cm) from the integration slot, some asymmetries are present. As the pressure
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Figure 2.11: Phase-averaged near field pressure depicted on the £ —y plane ( I & 1I). Phase difference
from frame-to-frame (a-e) is 72 degrees. Measurement grid is shown in (f).
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Figure 2.12: Phase-averaged near field pressure depicted on the y ~ z plane (I & II). Phase difference
from frame-to-frame (a -e) is 72 degrees. Measurement grid is shown in (f). Compressed air flow in
actuator is from right to left.
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wave moves into the farfield, the evolution shows stronger radiation to the left than to the right.
One possible explanation is that the asymmetric flow in the integration slot turns the acoustic waves
to the left. ‘

A more detailed perspective of the source field is given by the corresponding Mach contours in the
supply tube, integration slot, and resonance tube, shown in Figure 2.14(a-c). There are two major
points from Figure 2.14(a-c). First note that the flow in the integration slot is almost entirely
confined to a narrow channel up the wall on the resonance tube side. This feature is present in all
snapshots examined. The second important point is that the shock structure oscillates back and
forth across the integration slot, varying in extent from as far as 7/8 of the distance across the
integration slot to as little as 3/8 of the distance across the integration slot.

The periodic nature of the flow and acoustic field is illustrated by a pressure measurement, taken at
the bottom of zone 4 (the outer field) about 0.635 cm from the edge of the integration slot. Figure
2.15 shows the time history of the pressure and its basic nature over the first 30,000 timesteps of
evolution of both a viscous wall and a slip wall calculation. The alternative problem formulation
using slip wall boundary conditions was executed to gain further insight into the physics of this
problem. From these alternate formulation results, it is found that viscous effects are required for
the resonance to setup. Results presented later in the report will address these findings in more
detail.

One additional difference between the computations and experiments concerns details of the geom-
etry. The computational supply jet issues from a smooth contraction as previously described. In
contrast, the experimental geometry contains a sudden contraction. Losses for a sudden contrac-
tion in incompressible flow are approximately 35% based on the information in Blevins [25]. By
interpolation of the computational frequency response at various values of NPR values discussed in
[Cain et al., 2002b] the experiments were estimated to have a 24% system loss. The direct experi-
mentally measured loss was 28.4%.

2.9 ./’}pproaches for Controlling the PRT

The two approaches to devising a high bandwidth PRT are depicted in Figure 2.16. The first
approach was a Look Up Table (LUT) approach that relied on an extensive database. The second
approach used either the Quarter Wave Length (QWL) or the LUT as an initial estimate and varied
either the resonance tube depth, d (SISO- Single Input Single Output) or both the spacing parameter,
s, and the depth, d (MIMO- Multi Input Multi Output) within a feedback loop until satisfactory
results were obtained.

Based on the extensive data base, it was found that the resonance tube depth is the primary
parameter in controlling the PRT’s resonance frequency. In addition it was found that if the correct
values of pressure and spacing were used, changing only the depth can produce frequencies ranging
from 2700 Hz to 9000 Hz. For the computer controlled PRT tests an NPR of 3.5 and a spacing of
s/D =1 were chosen based on the results of Figure 2.3. Then, after averaging both increasing and
decreasing depth curves, a 6t* order polynomial curve fit to the data was obtained. The equation
representing the curve fit is:

d/D = 11.6168 x 107245 — 7.0172 x 10™1%% 4-20.2436 x 10715 f4 —
29.782 x 10113 1. 22,9436 x 1077 f2 — 9.1516 x 1073 + 16.9996

Where f is the desired frequency in Hertz, and d/D is the depth ratio.

Some of the results of this type of controller are shown in Figure 2.17 in the form of spectra of the
sound produced. In addition Table 2.5 provides information on the input frequency, output frequency
and the output frequency error. From these results it can be seen that this method produced the
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Figure 2.13: Pressure contours from a simulation of a powered resonance tube using the WIND
code with buffer zones to minimize reflected pressure waves from the outer boundaries. The nozzle

pressure ratio for these simulations was 3.72. Time steps: (a) 32,400 and (b) 32,600. Compressed
air flow in actuator is from left to right.
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Figure 2.14: Iso-Mach contours from a simulation of a powered resonance tube using the Wind code.
The nozzle pressure ratio for these simulations was 3.72. Time steps: (a) 31,400 (b) 32,200 and (c)
33,200. Compressed air flow in actuator is from left to right.
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Figure 2.15: A time trace of the pressure in the far field. Solution calculated for 30,000 time steps.
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Figure 2.16: Two approaches to creating a computer controlled high bandwidth actuator.
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Table 2.5: Summary of effectiveness of Look Up Table (LUT) approach and Feed Back controller
(FB) in producing high frequency excitation signals based on prescribed inputs in ascending order.
The error when using the feedback controller depends on the frequency bandwidth (20 Hz for our

experiments) that depends on sampling frequency (80 kHz) and number of points in the spectrum
(4096).

Input LUT Output LUT FB Output FB
Frequency Frequency Error Frequency Error
(kHz) (kHz) (Percent) (kHz) (Percent)
2.5 2.58 2.40 ) 2.52 0.80 .
3 3.008 0.27 2.99 0.67
4 4.023 0.57 4.02 0.50
5 4.992 0.16 5.02 0.40
6 6.144 2.40 - 6.01 0.20
7 6.976 0.34 7.02 0.29
[ 8.046 0.57 8.02 0.25
9 9.216 2.40 8.98 0.22
10 10.3 3.00 9.99 0.01
11 11.65 5.91 10.98 0.18

prescribed frequency with a maximum error of 6%. But in addition to the errors shown in the
table, changes in supply pressure could create situations where the device produced no tones at a
given integration slot spacing. In addition if errors occurred in the plant (or the system) or if noise
was present, the controller could not respond since it did not receive any feedback. It is therefore
necessary to search for a more robust method that incorporates feedback to handle noise within the
system and reduce the output error.

The effectiveness of the LUT and FB approaches is summarized in Tables 2.5 and 2.6. The look up
table method was made possible by very detailed data taken under various conditions. Significant
improvement in obtaining the desired frequency is obtained by using feedback. Details of the res-
onance tube depth on the resulting frequency, sound pressure level, and acoustic power are given
in Table 2.6. Figure 2.18 compares various control strategies in obtaining the prescribed frequency.
The departure from the QWL prediction increases at higher frequencies (lower tube depths). If the
QWL is used as an initial estimator reasonable convergence is obtained within 8 iterations. Using
the LUT as an initial estimator the SISO controller provides better results (Figure 2.19). Due to the
complexity of the functioning of the PRT, SISO control is not very effective. Five possible problems
are illustrated in Figure 2.20.

The first step towards building a closed loop controller was to make it a single input (frequency)
single output (depth) (SISO) controller. At the start of this step, Quarter Wave Length (QWL)
theory was used as an estimator and a routine needed to be chosen for iterating depth (I). A fixed
point iteration method was used to iterate for the depth and this produced the prescribed frequency.
A depth increment of /D = 0.2 was used for the results presented in this report. The iteration was
limited by the error between the measured frequency and the input frequency. And this error was
calculated based on the input parameters for the spectral calculations such as, sampling frequency
and number of points per record, which defined the resolution of the spectrum calculated.

The controller used in these experiments was built using a LABVIEW program that acquired the
data from the microphone, calculated the spectrum, and iteratively changed depth. Figure 2.18
shows the differences in errors resulting from the use of the quarter wavelength (QWL) as an open
loop controller, using the look up table (LUT) as an open loop controller and the feedback controlier
(FB), which uses the QWL as an initial estimator. It can be seen that the feedback controller
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Figure 2.17: Spectra showing results of the Look Up Table (LUT) approach. The vertical line depicts
the prescribed frequency and the spectrum represents the resulting actuation signal. (see Table 2.1
for the errors in using this method). NPR = 3.72 (NPR_Standard = 1.15 NPR).

(a) d/D = 4, input and output frequencies are 2.50 and 2.56 kHz, respectively

(b) d/D = 2, input and output frequencies are 5.00 and 4.99 kHz, respectively
{(c) d/D = 0.4, input and output frequencies are 11.00 and 11.65 kHz, respectively.
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Figure 2.18: Effectiveness of various control strategies in obtaining a prescribed frequency.

Table 2.6: Effect of resonance tube depth ratio (d/D) on the resulting frequency, sound pressure
level, acoustic power and acoustic energy (spacing parameter, s/D = 1.2, NPR = 3.72).

[ d/D | f (kHz) | SPL (dB) | prms (Pa) | W (Watts) | E (Joules) | Eff. (%) |
0.4 11.58 137 141.59 0.18 0.15 0.003
0.6 10.75 154 1002.37 8.89 7.37 0.175
0.8 941 156 1261.91 14.10 11.83 0.278
1.0 8.32 155 1124.68 11.20 9.54 0.221
1.2 7.36 151 709.63 4.46 3.87 0.088
14 6.66 157 1415.89 17.74 15.70 0.350
1.6 6.14 156 1261.91 14.10 12.70 0.278
2.0 5.25 154 1002.37 8.89 8.36 0.175
2.4 4.10 154 1002.37 8.89 9.20 0.175
2.8 3.46 154 1002.37 8.89 10.07 0.175
3.2 3.07 152 796.21 5.61 6.86 0.111
3.6 2.75 152 796.21 5.61 7.45 0.111
4.0 256 | 149 563.68 2.81 3.97 0.055
4.4 2.37 150 632.46 3.54 5.36 0.070
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Figure 2.19: Effectiveness of Single Input Single Output (SISO) Feed Back controller (FB) showing
its response to various input frequencies using the Look Up Table (LUT) as an initial estimator.
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reduced the error to around 20 Hz (based on 4096 point per record and 80 kHz sampling rate),
which in comparison to both QWL and LUT is a huge step in improving the control. It should
be mentioned that the iteration time depends on the time required to acquire the data, the time
required to calculate the spectrum and the time required to move the motor to the new depth. In
order to reduce the time required to lock on to a frequency one can either reduce the iteration time
or the number of iterations. To reduce the iteration time, the time needed to acquire the data to
calculate the spectrum can be reduced by increasing the sampling rate, reducing the number of
points per record, or reducing the number of records, or increasing the speed of the motor. To
reduce the number of iterations, the LUT was proposed as an estimator based on the results shown
in Figure 2.18. Figure 2.19 shows the results and response of such a controller. This controller could
successfully reduce the number of iterations by 70% of that required when the QWL was used as
an estimator, for the same value of error tolerance (as seen on the zoomed view). In general, it
can be seen that the controller works well and finds the prescribed frequency within 3-8 iterations.
However, there are some situations where the controller failed to work. For example, when the
prescribed frequency was 8.2 kHz, the controller failed since a strong harmonic appeared at 16 kHz.
This result and others created some challenges for the user. These challenges are summarized in
Figure 2.20.

Figure 2.20(a) shows the spectrum vs. depth contours under favorable conditions of spacing and
pressure, which are not easy to obtain at all times. For example, (Figure 2.20(b) and 2.20(f)) show
how the higher harmonics can dominate the spectrum, and makes it impossible to obtain a frequency
lower than 8.5 kHz. Figure 2.20(c) shows the presence of high frequency noise at different depths,
which makes it difficult for the controller to find the required frequency. In some cases the frequency
variation was not continuous i.e. some gaps appeared at specific frequencies, which make it difficult
for the controller to find certain frequencies as shown in Figure 2.20(c) and 2.20(d). In other cases
only low frequencies can be found in the spectrum and no tones appeared at depths where high
frequencies were expected, as shown in Figure 2.20(e). In order to solve these problems, a second
input to the controller was required. Since the integration slot spacing acts like a tuning parameter,
it could be varied to change the shape of the contours (shown in Figure 2.20) and at the same time
change the SPL, i.e. to obtain maximum SPL at a given frequency.

In the improved approach the spacing parameter was scanned to find the best value (one that
produced the maximum SPL). The spacing is limited to a specific range, which is the instability
region of the diamond shape shock cell structure of the jet. So, the minimum, maximum and step
size of the spacing were fed in to the controller. Following this, each spacing step was applied, the
frequency was locked on to using the program used previously (frequency lock loop), the SPL was
saved and a new step was initiated (the spacing loop) as shown in the flow chart of Figure 2.21.
When the spacing loop yielded the maximum possible value of SPL, the spacing corresponding to the
maximum value of SPL, was chosen and the frequency-lock program was run again. The response
of this controller for an input frequency of 9 kHz and spacing range of s/D = 0.8 to 1.08 with a
0.254 cm step size is represented in Figure 2.22. The plot shows 8 fields, starting from s/D = 0.8 to
1.08, which represents the spacing used each time in the spacing loop. The prescribed and measured
frequencies vs. number of iterations are plotted in the upper part and SPL vs. number of iteration
are plotted in the lower part. So, for example at a spacing of s/D = 0.8 the frequency was locked
at 9 kHz after 13 iterations and the corresponding SPL (155 dB) was saved. Then, the next spacing
was set (s/D = 0.84) and the same procedure repeated.

The stored data points of the spacing and SPL are marked in circles. Based on these results, the
optimal spacing of s/D = 1.08, which produced the maximum SPL, was chosen and the frequency
lock routine was run again, to obtain 9 kHz at 157 dB. It should be mentioned here that logic was
incorporated into the program to terminate the frequency-lock loop if any unusual result occurs (like
higher harmonics, frequency gaps, etc.).

Since the PRT phenomenon is nonlinear and it is hard to predict the occurrence of the tone, a fixed
point iteration method was used as a controller. By examining this type of method, it can be easily
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noticed that it is a pure gain change method. The time needed by this controller to lock to the
required frequency was presented in the current study as number of iterations. The time needed for
a single iteration mainly depends on the time needed to collect the data and on the time of moving
the motors to the required distance.

When using the SISO FB controller, it was found that it can compensate for internal noise, and
sometimes for external noise as well. But, for some cases, it could not compensate for large external
perturbations such as a big change in pressure. As a result the MIMO FB controller was constructed.
From the mapping results, it was found that the pressure and spacing are correlated. So, if the
pressure changes and results in the absence of resonance, a change in spacing can compensate for
that and can produce the resonance again. Based on this observation, the MIMO FB controller was
built. Where it scans a range of spacing specified by the user locks on to the required frequency, and
saves the corresponding SPL value at each spacing value. Therefore, using this controller not only
solved the problem in producing the tone if the pressure condition changed, but it also could be made
to find the highest SPL level at that frequency. To demonstrate the improvements obtained using
this closed loop controller over the open loop type, various frequencies where chosen to be run on
both controllers and the resultant frequency is tabulated in Table 2.5. The table shows a significant
reduction in error when going from the LUT method to the FB method. Where in LUT method the
maximum error was 5.9% compared to 0.8% in FB method. The last point to be discussed about
the controller is the role of the estimator; it was clearly shown how the estimator affects the number
of iterations needed by the controller to lock on to the required frequency. It was shown that the
LUT estimator reduced the number of iterations by 30% compared to the QWL estimator. Since the
LUT estimator was based on a 6th degree polynomial curve fit, an increase in the degree or in the
significant figures in the fitting equation can result in a more accurate estimator, and consequently
less iteration and faster control.

2.10 Prototype Summary

A prototype high bandwidth actuator based on the Powered Resonance Tube (PRT) concept was
developed and demonstrated. The PRT concept involves a high speed jet that impinges on the
open end of an open-closed resonance tube. This device is capable of producing flow oscillations of
high amplitude and high frequency. The actuator could produce frequencies ranging from 500 Hz
to 15,000 Hz at amplitudes up to 160 dB. The experimental developments were complemented by
analytical modeling and direct numerical simulations.

Analytical modeling of the acoustic resonances in the PRT geometry [Kerschen, 2001] was carried
out in order to understand how the geometrical parameters influence the resonance frequency. For
the smaller tube depths, associated with higher resonance frequencies, the integration slot geometry
was found to play an important role in determining the resonant frequency.

Direct numerical simulations of the unsteady flow in the PRT actuator were carried out in order
to explore the flow physics and better understand the fundamental mechanisms responsible for the
resonance. Scaled simulations of the powered resonance have been achieved with good correspon-
dence to laboratory experiments in terms of the frequency (simulated at 7.6 kHz) and amplitude (a
simulation value of 160 dB) of their resonant response. The simulations suggest new insights into
the complexity and details of the flowfield.

The initial simulations at very low Reynolds number show that the flow in the integration slot is
primarily on the resonance tube side with almost no flow on the supply tube side of the integration
slot. Results to be presented later will show that this is not the case at higher Reynolds numbers.

Extensive experimental data were acquired and then used to create a look up table program for com-
puter controlled operation. Detailed measurements useful for understanding physics and validating




SPL (dB)

10

f(kHz)

149

147

Input Frequency

- =" Controller Response
3
X i
- | ;‘» I'\ "
| e \ }"& I ' \)
-l';-\ . xrb‘li'\ﬁﬁ'r‘l#h‘s! 1 - 2111
| (L 1% 7? T’\,if: CER K !l'h d &‘ =1
0.80 .
5 8 0.84 & 0.02 |0.96 ! L 1.08
i l 1.04
~ 1.00
L (a)
s a2 b ads o 3 Via ke s o 1 o A STERY P Y T Y i
10 20 30 N 40 50 60
)
+
> v
L 3
> —F&— Saved SPL
X 1 ) 1
0 10 20 30 40 50 60
N

Figure 2.22: Response of the MIMO feedback controller for an input frequency of 9 kHz. The figure
also illustrates the scanning of the spacing parameter (s/D) 0.8-1.08 to produce the prescribed
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simulations were made. The detailed characterization also provides guidance for actuator deploy-
ment. Finally, it is believed that numerous applications exist for such high bandwidth actuators
including jet mixing, impingement noise suppression, and weapons bay applications.
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Chapter 3

Impinging Tone Suppression Using
the Powered Resonance Tube

3.1 Overview

In this chapter the jet impingement tone phenomenon and the capability of the powered resonance
tube for acoustic suppression in the subsonic Mach number range is examined. The suppression
" utilizes high frequency excitation of the main jet shear layer by Powered Resonance Tube (PRT)
actuators, for the impingement tone suppression. Since the experimentation included variation in
both the PRT and impingement tone settings new insights have been gained. Some of the variables
examined were acoustic in nature, whereas the others were fluidic. Through careful experimental
and analytical studies the most significant variables responsible for the suppression are identified.
The work also underlines the importance of high frequency excitation by revealing the fact that,
for the same suppression level, selecting the optimal acoustic tone can reduce the mass flow rate by
almost 50%; as compared to suppression due to oscillatory mass injection. The study reveals that
impingement tones of certain frequencies were easier to suppress than others and offers a conjecture
for it. Some of the other issues addressed include staging behavior of the impingement tone, Perceived
Noise Level Corrected for the Tone (PNLT) as a measure of effective suppression, and the presence
of additional spikes in the suppressed impingement tone spectra.

3.2 Introduction to Jet Impingement Tones

When a free jet of air with high velocity (i.e. M > 0.6 ) and high Reynolds number (Re >
2 x 10%) is directed normally on a flat plate it gives rise to discrete tones of very large am-
plitude noise at discrete frequencies—referred to as jet impingement tonesfTam and Ahuja, 1990].
This phenomenon poses many problems when it arises in practical situations. In laser cutting,
it is a common practice to remove the molten mass of metal with the help of high speed jet
of air. Here the quality of the cut depends on the oscillatory behavior of the jet. A stable
jet, free from any impingement tones, is a prerequisite for deeper, cleaner and straighter laser
cuts|Masuda and Nakamura, 1992]. Thin glass sheets are prone to cracks when tempered by a cold
air jet with impingement tones[Aratani et al., 1995]. One of the methods of surface coating, known
as cold gas dynamic spray coating, is carried out by blasting the fine grain metal powder directly
on to the surface to be coated with the help of a high velocity jet of air. Here, the properties of the
surface finish largely depends on the stability of the jet. An unstable jet is found to deteriorate the
surface finish. Another example of great importance is Short Take-Off Vertical Landing (STOVL)
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Figure 3.1: STOVL engine in hovering mode and impingement tone

aircraft engines[Krothapalli et al., 1999]. As shown in Figure 3.1, when the aircraft is close to the
ground, the plumes from the engines hit the ground and produce impingement tones. Lift loss, sonic
fatigue, and ground erosion caused by the hot plumes of STOVL engines in the hovering mode are
among the concerns that motivated this work.

Figure 3.2 shows a schematic of the feedback loop of the jet impingement tone. The interaction of the
unsteady flow with the ground surface gives rise to pressure disturbances. These disturbances travel
upstream, reach the lip of the nozzle, there they are scattered off the edge of the nozzle and create
a wavelength matching allowing excitation of the shear layer through the receptivity process. This
periodic excitation strengthens the shear layer instabilities producing large scale coherent structures.
When these large scale structures hit the ground plane, the sound generation mechanism is further
intensified, thus completing the feedback loop and producing high intensity discrete frequency tones
known as impingement tones. In the experiments, the amplitude level of the tone was as high as
145 dB (measured at 3.2 Dy from the main nozzle), whereas the frequency depended on a number
of parameters viz. Mach number of the jet, the standoff distance between the nozzle exit and the
ground plate and finally the exit diameter of the nozzle.

An example of flow control, specifically pertaining to the impingement tone includes the work of
[Sheplak and Spina, 1994] who used a high speed co-flow to shield the main jet shear layer from
the disturbance waves. This method achieved suppression in the broadband noise levels greater
than 10 dB and also completely suppressed the impingement tone, but at the cost of large mass
flow rate (up to 20-25% of the main jet). Recently, [Alvi et al., 2003] made an effort to control the
impingement tone. They employed a circular array of micro jets around the periphery of the main
jet to demonstrate reduction in the overall SPL (8 dB).

Depending on the relation of the forcing frequency of the perturbations with that of the original
instability frequency, active flow control can be further divided into two groups-AFC-I and AFC-IL
AFC-I involves the use of low frequency unsteady forcing to excite instability waves of a laminar
flow, or the large scale structure of a turbulent flow5. This technique has been used extensively
in the past decade|[Cain et al., 2003b]. The second class (AFC-II), that has been developed more
recently, involves high frequency forcing of the turbulent boundary or shear layer; i.e. higher than the
neutral frequency predicted by the linear stability theory. It was [Wiltse and Glezer, 1998] who first
discovered the effect of high frequency excitation of the turbulent shear layer. They found a dramatic
alteration in the development of a turbulent shear layer. Analysis of their measurements showed
that high frequency excitation in the transitional region of the shear layer inhibits the growth rate
of large scale structures. The numerical work of [Cain et al., 2001] showed that beyond a threshold
level, the magnitude of suppression of the turbulent kinetic energy increased monotonically with
increasing amplitude of the high frequency forcing. For a given forcing energy, the largest reduction
in the turbulent kinetic energy was achieved at frequencies two or three times the neutral frequency
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Figure 3.2: Schematics of the impingement tone feedback mechanism.

determined from the linear stability theory.

For the impingement tone, the formation of coherent structures is important. Since high frequency
forcing of the shear layer in the transition region inhibits the formation of large scale structure, one
can expect that high frequency acoustic signal from the PRTs would suppress the impingement tone.

The Powered Resonance Tube (PRT) or Hartmann Whistle [Hartmann and Troll, 1922] as it is often
referred to, is an actuator based on aeroacoustic principles{Brocher et al., 1970, Raman et al., 2004a).
It consists of a supersonic under-expanded jet aimed at a cylindrical tube open at one end and
closed at the other. Figure 3.3 shows a version of the PRT that was used in the experiments.
Apart from the cylindrical nozzle and the cylindrical resonance tube one can also see a piston and
shield. In the present application the piston is used to control the depth of the cylindrical tube
which in turn governs the frequency of the signal produced by the device. The shield helps to
direct the signal towards the region where flow control is desired. Due to its potential for op-
erating at large bandwidths (3 to 18 kHz), and producing high amplitude levels (above 150 dB)
[Raman et al., 2004a], the PRT is a potential device for use in Active Flow Control applications
[Kastner et al., 2004, Murugappan and Gutmark, 2003].

The present chapter focuses on two sets of experiments. The first set characterizes the salient
features of the impingement tone. It also shows the influence of lift plate (prototype of the airframe
structure) on the frequency staging behavior of the tones. The second set of experiments, addresses
the payoff of this work, namely an evaluation of the effectiveness of the PRTs in suppressing the
impingement tone. These experiments are accompanied by analyses and numerous observations to
highlight some of the important parameters in the suppression mechanism.
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Figure 3.3: Schematic diagram of the Powered Resonance Tube (PRT).
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Figure 3.4: PRT integrated jet impingement tone set-up.

3.3 Jet Impingement Tone Experimental Apparatus

Figure 3.4 shows a schematic of the impingement tone set-up with PRTs integrated into it. It
consists of a convergent conical nozzle (referred to as main nozzle) with an exit diameter of 3.175 cm
(1.25”) and contraction ratio of 1.6 and a taper angle of 70. The main nozzle receives air through a
cylindrical plenum with 15.24 cm diameter and 91.44 cm length (6” x36”). A circular plate, referred
to as lift plate, of 10.16 cm (4”) diameter is mounted flush with the main nozzle exit to simulate
the effect of the airplane body. The jet emanating from the main nozzle impinges on a square steel
ground plate of the size 68.58cm x68.58cm x0.635¢cm (277 x27°x 1/4”) which can be adjusted to any
desired stand off distance from the main nozzle.

Around the circumference of the main nozzle, four PRTs with their cavity openings facing the main
jet are fitted. The PRTs receive air through a plenum chamber having 7.62 cm diameter and 91.44
cm length (3”x36”) via individual flexible hoses. Care was taken to keep these hoses straight, since,
otherwise it was found to affect the performance of the PRTs.

Both the main jet and PRT plenums are instrumented with Setra 204 pressure transducers to
measure the stagnation pressure. The large size (1.25”) of the main nozzle resulted in a rapid blow
down operation. This necessitated monitoring of the main jet plenum pressure through the data
acquisition system. The electrical output of the Setra transducer, connected to the main jet plenum
chamber, was input to the data acquisition system for this purpose. Once the air supply to the main
nozzle was turned on and as the main nozzle stagnation pressure (i.e. plenum pressure) approached
the desired pressure, data was acquired for 1.6 seconds at a sampling rate of 500 kHz through two
channels of the DAQ system. One of the channels measured the stagnation pressure of the main
jet, whereas, the other was connected to a B&K 4393 microphone situated at 3.2 Dys (4”) from the
main nozzle. To avoid aliasing, the microphone signal was passed through a 4* order analog Bessel
filter (manufactured by Ithaco). Here the high-pass set to 10 Hz, whereas low-pass limit was set to
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100 kHz.

Once the signal was obtained, the time series was broken into five segments. The mean main jet
stagnation pressure of each segment varied marginally from the desired value. This variation was of
the order of 4.20 x 10~% NPR (0.1 psi) . The segment which had the mean pressure closest to the
desired pressure was identified. It is this segment which was processed for further analysis. Here one
must note that, total processed data consisted of 200 records, where each record contained 4096 data.
points. For choosing the data-strip which had the mean pressure closest to the desired pressure, a
moving window spanning 100 records was used. The window moved in the step of 20 records to scan
the complete data

3.4 Jet Impingement Tone Results and Discussion

3.4.1 Impingement Tone Characterization

Before demonstrating the use of high frequency acoustic excitation in suppressing the impingement
tone, it was imperative to examine the characteristics of the impingement tone by itself. In order
to characterize the salient features such as tonal frequency, tonal SPL, and overall SPL of the
impingement tone, the main jet was run at a fully expanded Mach number M; = 0.86, for stand-off
distances (h/Dps) ranging from 1.6 to 3.3 in steps of 0.1. Measurements were made with and without
the lift plate at each step.

Figure 3.5 shows a comparison between experimentally obtained impingement tone frequencies and
theoretically predicted frequency variation curves-also known as staging curves. In the figure each
continuous line represents a particular stage, based on following phase locking relation proposed by
Powell [Powell, 1953).

11 R h
7 n+b. [C‘u_j * Oz&] (3-1)

Each stage corresponds to a different value of n. In the above expression, so as to get good fit
between the experimental data and theoretical prediction, the convective velocity of the coherent
structures is assumed to be 0.6 times the free jet velocity i.e. C; = 1.66. Acoustic waves are assumed
to travel in the region exterior to the jet. Hence, C; was assumed to be 1. The phase shift (Ay)
associated with the acoustic wave reflection from the ground plate was assumed to be zero. As
shown in the Figure 3.5(a), in the absence of the lift plate, phase locking shows very little influence
on the impingement tone frequency.

Except for the initial range of the stand-off distances, the impingement tone frequency remains more
or less constant. The conjecture is that installing the lift plate strengthens the coupling between
the shear layer and acoustic instabilities by increasing the amount of acoustic energy scattered
from the nozzle region. Hence, as shown in the Figure 3.5(b), in the presence of the lift plate the
experimentally obtained frequencies show a better match with theory.

Figure 3.6 shows the variation in the overall SPL and tonal SPL. Figures 3.6(a) and 3.6(b) correspond
to the cases run without the lift plate and with the lift plate, respectively. In the absence of the lift
plate, the mean overall SPL was found to be 143 dB. Whereas, the mean tonal SPL was found to
be 138 dB. The lift plate was found to increase these values by 3 dB and 2 dB, respectively. The
difference between the overall SPL and the tonal SPL indicates the strength of the tone in a sense
that a small difference in these values indicates a strong tone. By this account, in both the cases,
for small stand-off distances one can see that the tone is very weak. Due to the better agreement of
the measured frequencies with the theoretical prediction and due to production of tones with higher
acoustic level, which are better amenable to suppression, all the experiments from this point on were
conducted with lift plate in place.
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Figure 3.5: Impingement tone frequency staging: comparison of phase lock theory and experimental
data a) without lift plate, b) with lift plate (M; = 0.86, C; = 1.66, D) = 1.25”). Presence of the
lift plate improves the fit of the data with the theoretical prediction.
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Though not similar in nature, discontinuities in frequency also occur if the main jet Mach number
is varied keeping the stand-off distance constant as shown in Figure 3.7. In the case of Figure 3.7(a)
the stand-off distance (h/Dxs) was set to 2.4, for Figure 3.7(b) it was set to 3.2. For h/Dys = 2.4,
the jet was run at various Mach numbers from 0.91 to 0.78. Whereas, for h/Dps = 3.2, the jet was
run in the Mach number range 0.82 to 0.94. During the data acquisition, an attempt was made
to narrow the intervals when there a frequency discontinuity occurred. In Figure 3.7(a) one can
notice that, as the Mach number is reduced from 0.91, the impingement tone maintains a constant
frequency of 3,296 Hz for a period. However, at Mach number around 0.86 the frequency suddenly
jumps to 4,272 Hz. This frequency remains unchanged until 0.78 where again the tone jumps to a
higher frequency mode. For the stand-off distance 3.2 (Figure 3.7(b)), except for a few data points,
the frequency mode of the tone seems to be unaffected by the Mach number.

In both the plots some of the data points are circled. They represent the cases which are to be
used as baseline cases for the impingement tone suppression. On the same plots are also shown
the “resonant acoustic frequencies”. The resonant acoustic frequency is a theoretically calculated
full wavelength acoustic frequency based on the standoff distance between lift plate and ground
plate. For the stand-off distance (h/Dp) 2.4 and 3.2 this frequency was 4,465 Hz and 3,349 Hz
respectively. It will be shown later that it is the proximity of this resonant frequency with the actual
impingement tone frequency that is responsible for easier suppression of certain impingement tone
frequencies than the others.

Figure 3.8 shows the variation in the impingement tone amplitude and overall SPL for the aforemen-
tioned cases. Figure 3.8(a) pertains to the stand-off distance of 2.4, whereas Figure 3.8(b) pertains
to that of 3.2. For the stand-off distance of 2.4, both the tonal SPL and overall SPL increase as the
Mach number is increased. However, for the stand-off distance of 3.2 the trend is not very clear.
There seems to be some optimum Mach number for which both the tonal SPL and overall SPL
achieve the highest value.

3.4.2 Impingement Tone Suppression

The last section mentions the cases which were used as baseline impingement tone cases. These
impingement tones were suppressed using PRTs. The PRTs were set to produce 10,000 Hz, 12,000
Hz, 14,000 Hz, and 17,500 Hz acoustic signals. The frequency being primarily a function of the PRT
depth, this variation in the signal frequency was achieved by appropriate piston settings. So as to
keep the variation in the frequency of different PRTs within a limit (less than 500 Hz), the depths of
individual PRTs were manually fine tuned. The fine tuning of the PRT depth for 10,000 Hz was done
at an NPR of 1.63 (24 psia), 12,000 Hz at an NPR of 2.04 (30 psia), 14,000 HZ at an NPR of 2.72
(40 psia) and 17,500 Hz was done at an NPR of 4.29 (63 psia). It is to be noted that, running the
PRTs at pressures other than the ones used for their fine tuning marginally changes their frequency.
Thus, the aforementioned frequencies are “nominal frequencies”. An experiment was also conducted
with the PRT at zero depth. This case did not produce any strong acoustic tones. It was included
to examine the effect of pure fluidic excitation to the main jet.

Figure 3.9 shows the variation of the salient features of the acoustic signal produced by the PRT for
different nominal frequency settings due to the change in stagnation pressure. Figure 3.9(a) shows
variation in the frequency. Since the zero depth PRT did not produce any strong tone which could
be tracked for its frequency change, this case was not included in the Figure 3.9(a). It can be seen
that, except for the higher end nominal frequencies such as 17,500 Hz and 14,000 Hz, the variation
in the frequency due to the change in the stagnation pressure is marginal. Figure 3.9(b) shows the
variation in the PRT tonal SPL. As compared to the variation in nominal frequency, the variation
in the tonal SPL is very large; of the order of 10 dB. For all the cases, the tonal SPL values steadily
increase as the stagnation pressure is increased. However, after a certain level (approximately 135
dB) they seem to be saturated. For zero depth, the SPL values were considerably lower than the
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Figure 3.9: Salient features of the PRT for different nominal frequency settings. a) frequency, and
b) tonal amplitude. Except for the 17,500 Hz the variation in the nominal frequency of the PRT
due to the change in PRT stagnation pressure is marginal. However, variation in the SPL in all the
cases is significant of the order of 10 dB.

other cases. Very low SPL values suggest that these values refer to the broadband peak-not a sharp
spike characteristic of the acoustic tone. :

To examine the effect of the high frequency acoustic excitation on the impingement tone, the main
jet was operated in the presence of the activated PRTs. Figure 3.10 shows suppression in the
impingement tone spike for different impingement tone and PRT settings. Here the suppression in
the impingement tone spike was calculated by subtracting the SPL of the impingement tone when
PRTs were activated from the SPL of the impingement tone when PRTs were turned off. Figure
3.10(a) refers to the 4,272 Hz impingement tone, whereas Figure 3.10(b) refers to the 3,296 Hz
impingement tone. In both the cases the PRTs could suppress the impingement tone up to 25 dB
depending upon the frequency and supply pressure of the PRT. In the case of 3,296 Hz impingement
tone, to achieve 20dB suppression, the zero depth PRT had to operate at an NPR of 5.50. However,
by introducing an acoustic tone and selecting an appropriate frequency the same suppression can be
achieved at an NPR of 2.75. This observation is consistent with 4,272 Hz impingement tone also.
The substantial reduction in the NPR and mass flow rate, almost of the order of 50%, confirms the
fact that high frequency forcing is an effective element and far superior strategy, as compared to the
oscillatory (broadband) mass injection, to suppress the impingement tone.

The suppression experiment involved a number of variables viz. frequency, tonal amplitude, mass
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Figure 3.10: Primary impingement tone suppression. (a) 3,296 Hz (M; = 0.88, h/Dj = 2.4), and
(b) 4,272 Hz (M; = 0.86, h/Dys). For same level of maximum suppression, selecting the acoustic
tone of the appropriate frequency reduces the NPR and hence the mass flow rate by 50%. This

proves the fact that high frequency forcing is an effective and far superior strategy, as compared to
the oscillatory mass injection.
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Figure 3.11: Primary impingement tone suppression against the parameter PRT tone frequency/
impingement tone frequency (M; = 0.88, h/Dp = 2.4). The deterioration in the collapse of the
data suggests that frequency might not be the most important variable affecting suppression.

flow rate etc. of the actuation signal and the impingement tone itself. Though the data proved
the effectiveness of high frequency forcing, it does not reveal the responsible variable(s) behind the
suppression. A search has therefore been conducted for an appropriate scaling parameter which will
collapse all the suppression data to a single line.

Some of the parameters considered in this study are: actuation signal frequency, actuation signal
amplitude, rate of mass injection, frequency and amplitude of the impingement tone itself, its relation
with the natural shedding frequency and feedback acoustic frequency. The PRT actuation signal
frequency was the first parameter that was examined. Figure 3.11 shows the distribution of the data
for the 3,296 Hz impingement tone case. From the graph it is apparent that this new parameter
does not make the data collapse satisfactorily.

For the same pressure, the actuation signal amplitude varied with frequency as shown in Figure
3.9(a). Next, the PRT amplitude in decibels was tried as a new parameter. Figure 3.12 shows im-
pingement tone suppression against the actuation signal amplitude, again for 3,296 Hz impingement
tone case. These plots have interesting characteristics. Except for the zero depth setting, data from
all the PRT settings collapse onto a single curve. Due to the absence of the acoustic tone, data
pertaining to the zero depth setting remained distinct and separate from the other cases. The zero
depth PRT achieves its suppression through the splashing of the oscillatory mass flow. This led us
to include mass flow rate into the PRT amplitude as a parameter.

Figure 3.13 shows suppression against this newly formulated parameter i.e. “PRT mass flow rate
x PRT tone amplitude”. For 3,296 Hz (Figure 3.13(a)), and also for 4,272 Hz (Figure 3.13(b))
impingement tones, this parameter shows the best collapse of the data. Any scatter present throws
light on the optimum actuation signal frequency. This scatter is more apparent in the case of 3,296
Hz impingement tone. In this case, one can see that as the frequency of the tone increases from
10,000 Hz the suppression level and hence the effectiveness of the tone increases. In fact 12,000 Hz
tone is the most effective. However, further increase in the PRT frequency results in the decrease of
suppression level. In fact for 17,500 Hz it is almost same as that of the zero depth case.

The variation in the overall SPL is now discussed. Figure 3.14 shows variation of the overall SPL
against the parameter “PRT mass flow rate x PRT tone amplitude.” For the cases run the maxi-
mum suppression noted was 12 dB. Turning the PRT on with increasing supply pressure invariably
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Figure 3.12: Primary impingement tone suppression against the parameter PRT tonal SPL (M; =
0.88, h/Djps = 2.4). Tonal SPL proves to be a successful parameter for all the cases except for the
no tone case. The zero depth PRT achieves its suppression through the splashing of the oscillatory
mass flow. Isolation of the “no tone” PRT hints us mass flow to be one of the crucial variables behind
the suppression.

Table 3.1: PNLT analysis for 4272 Hz impingement tone and 17,500 Hz PRT frequency setting

PRT NPR Primary Tone Overall SPL PRT PNLT
Suppression Suppression Amplitude Suppression
(dB) (dB) (dB) (dB)
3.74 6 6 132.93 8.01
4.08 14 6 138.77 11.99

increases the impingement tone spike suppression. However, in the process it also adds its own noise.
Hence, at higher supply pressure to the PRTs the overall SPL suppression ceases to increase.

The overall SPL is a good measure of the total energy in the acoustic spectrum. However, it does
not reflect the human annoyance level to the sound. The scale which measures the annoyance level
of the sound, and the one which is widely used in the aircraft industry is Perceived Noise Level
Corrected for the Tone (PNLT). As per this scale, the sound energy which falls into the bandwidth
of 500 Hz to 5000 Hz is particularly annoying, whereas higher frequencies are less annoying. Turning
the PRT on reduces the impingement tone spike SPL but at the cost of the addition of the PRT
noise. This may result in the increase in the overall SPL. However, increase in the overall SPL does
not necessarily mean increase in the PNLT. Since one is cutting down the impingement tone SPL,
which lies in the sensitive zone (i.e. 500 Hz to 5,000 Hz), and adding the PRT noise in the less
sensitive high frequency range, the PNLT value may still decrease. To support this argument, a
comparison between the overall SPL suppression and the PNLT suppression is made for 4,272 Hz
impingement tone and 17,500 Hz PRT frequency setting for two supply pressures. Table 3.1 gives a
summary of the analysis. At an NPR of 3.74 (55 psia) the PRTs with 17,500 setting cut down the
impingement tone spike by 6 dB. Increasing the PRT supply pressure increases the spike suppression
by 8 dB. However, suppression in the overall SPL remain the same i.e. 6 dB. The additional 5.84
dB contributed by the PRT tone should explain this unchanged overall SPL. However, this does
not hold true for PNLT suppression. For the reasons explained earlier the PNLT suppression value
increases even though the overall SPL value remains unchanged.
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Figure 3.13: Primary impingement tone suppression against the parameter “PRT mass flow rate x
PRT tonal SPL”. (a) 3296 Hz (M; = 0.88, h/Dny = 2.4), and (b) 4272 Hz (M; = 0.86, /Dy =
2.4). The parameter “PRT mass flow rate x PRT tonal SPL” proves to be successful for both the
impingement tones. Good collapse suggests that, PRT mass flow rate and PRT tonal SPL are the
most crucial variables which affect the suppression. The figure (especially (a)) also points out the

optimum frequency for the suppression (i.e. 12,000 Hz).
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(M; = 0.86, h/Dpr = 2.4). As in the case of Figure 3.10, the present figure represents the suppression
data in a raw form. As apparent from the figure, PRTs can achieve suppression up to and above 10
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Figure 3.15: Primary impingement tone suppression (M; = 0.86, h/Dps = 3.2). Comparison with
Figure 3.13(a) and 3.13(b) shows that for 3,662 Hz and 4,272 Hz tones, suppression starts picking
up late as compared to 3,296 Hz tone. Hence, 3,662 Hz and 4,272 Hz tones are difficult to suppress.
Our conjecture is that the close proximity of these tones with the “resonant acoustic frequency”
(Figure 3.7) is responsible their suppression.

3.4.3 Role of Resonant Acoustic Frequency in Impingement Tone Sup-
pression

Referring to Figure 3.13 one can notice that, as compared to the 4,4272 Hz tone, the suppression
of the 3,296 Hz impingement tone begins earlier at a “PRT mass flow rate x PRT tone amplitude”
of 0.6. This suggests that, the 3,296 Hz impingement tone is easier to suppress than the 4,272 Hz.
Here, the difference between the two impingement tones is not just in the “values” of frequency, but
also in the proximity of these values with the resonant acoustic frequency as mentioned in Figure
3.7. For both the impingement tones the resonant acoustic frequency was found to be 4,465 Hz.
This suggests that for 4,272 Hz case impingement tone, there was a standing acoustic field between
lift plate and ground plate. The conjecture is that the standing wave pattern is difficult to decouple
from the shear layer instabilities. Hence, 4,272 Hz case is difficult to suppress.

To support the argument that it is not the increase in the frequency, but the aforementioned conjec-
ture which is responsible for the difficulty in suppression, a new impingement tone frequency (3,662
Hz) at h/Dps = 3.2 was tested for the suppression. As mentioned earlier, for this case the reso-
nant acoustic frequency was found to be 3,349 Hz. Close match between the impingement tone and
resonant acoustic frequency suggests that 3,662 Hz tone would be difficult to suppress. Figure 3.15
shows suppression for this impingement tone. As expected, the suppression is more difficult as in
the case of the 4,272 Hz tone. This fact strengthens the argument that it is not the frequency alone,
but the relationship of the impingement tone with the full wavelength standing acoustic frequency
which comes into the picture for impingement tone suppression. In this case PRTs can suppress the
impingement tone spike by not more than 14 dB.

The moderate (14 dB) maximum suppression noticed for this case can be attributed to the fact that
for the 3662 Hz the impingement tone, the spike itself was quite weak.




3.4.4 Augmentation of the Secondary Tone

Figure 3.16 shows the 4272 Hz and the 3,296 Hz impingement tone spectra in the absence and also
in the presence of the PRT signal. One can notice that PRTs can suppress not only the impingement
tone spike, but also the broadband noise. Comparison of Figure 3.16(a) and 3.16(b) reveals distinct
nature of the 4272 Hz and the 3296 Hz impingement tone. The 4272 Hz impingement tone, the one
which is very close to the resonant acoustic frequency, is dominated by first few harmonics. Whereas,
3296 Hz spectrum contains only first harmonic and sub-harmonic peaks. Even the PRT suppressed
spectra of these two tones show distinctive result. In the case of 3296 Hz spectrum, turning on the
PRTs gives rise to an additional spike (referred to as secondary tone) at 4,272 Hz. The degree of
the augmentation of this secondary tone depends on the particular PRT setting. As one can see in
the Figure 3.17 for certain PRT settings it could grow by 10 dB.

3.5 Conclusions Regarding Suppression of Jet Impingement
Tones Using PRTs

In this chapter the suppression of primary jet impingement tones using PRT actuators was explored.
The work began by characterizing impingement tone staging behavior for a fixed Mach number and
various stand-off distances. Next, PRTs located circumferentially near the main nozzle exit were
used to introduce high frequency excitation in the jet’s shear layer. The tonal, overall SPL, and
PNLT suppression levels were examined for various actuation conditions (frequency, amplitude, and
mass flow rate) at different main jet impingement tone frequencies.

The following important results emerged from this study:

1. The PRT actuator was capable of suppressing tonal, overall SPL and PNLT levels of the
impingement jet from the main nozzle. A combination of parameters that could reconcile the
suppression characteristics at various PRT excitation frequencies was deduced.

2. Tt was observed that the impingement tone could be suppressed either by a strongly resonating
PRT or a zero depth PRT (with no dominant tone), both of which were sources of unsteady
mass addition. However, the mass flow requirements were substantially lower for the former.

3. It was found that impingement tones that matched the full wavelength acoustic frequency
(h = A) were more difficult to suppress than the mismatched frequencies

It is hoped that results form this work will stimulate further research leading to further active flow
control applications for the aircraft.
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Figure 3.16: Primary impingement tone spectrum. (a) 4,272 Hz (M; = 0.86, h/Dp = 2.4), and (b)
3,296 Hz (M; = 0.88, h/Dps = 2.4). The nature of the suppressed as well as unsuppressed spectra
of 4,272 and 3,296 Hz impingement tone is different. When unsuppressed, the 4,272 Hz spectra
shows strong harmonic content. The 3,296 Hz spectrum does not contain any strong harmonic, but
it shows weak harmonic and sub-harmonic spike. When suppressed, the 3,296 Hz tone shows an
additional spike (referred to as a “secondary tone”) at 4,272 Hz.
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Chapter 4

Resonance Characteristics and
Actuation Signal Directivity

4.1 Overview

The Powered Resonance Tube (PRT) actuator and its variants are new developments in Active Flow
Control (AFC) technology. The PRT is attractive because it has no moving parts and can produce
acoustic tones that have amplitude greater than 150 dB over a large frequency bandwidth. The
first part of this chapter deals with the resonance characteristics of the PRT as a function of the
operating parameters such as jet-to-tube spacing (s), tube depth (I), and Nozzle Pressure Ratio
(NPR). It was found that: (i). at low NPR (3.33), the PRT resonates at discrete combinations
of spacing and depth. (ii). using theoretical estimates for predicting shock cell lengths, one could
observe a correlation between the theoretical prediction for shock cell length and the spacing at
which the PRT resonates. (iii). at high NPR (4.29), for a fixed depth, the PRT resonates at
virtually all spacings. (iv). the frequency at which the PRT resonates remains approximately
constant, regardless of the spacing between the supply jet and the opening of the resonance tube.
The second part of the study focused on examining the directivity of the acoustic radiation from
the PRT-significant for developing orientation strategies of the PRT with respect to flow control
applications. The directivity of the fundamental PRT tone and that of its harmonics were studied
for a variety of resonance frequencies, both separately as well as cumulatively. It was found that the
fundamental part of the actuation signal radiated predominantly in the downstream direction of the
jet for low resonance frequencies. As the resonance frequency was increased from 3 kHz to 12 kHz,
the directivity changed from downstream of the jet to vertically upwards, and finally upstream of
the jet at the highest frequencies.

4.2 Introduction to the Resonance Tube Characteristics and
Directivity Study

The PRT phenomenon was first discovered by J. Hartmann in 1918 during the course of experimental
investigations of axial stagnation pressure distribution in a supersonic jet [Hartmann and Troll, 1922]
and later, in an effort to improve the resonating characteristics of the actuator, [Savoy, 1950] and
[Brocher et al., 1970] experimented with several additional features, commonly known as destabiliz-
ing trips viz. stems, and reflective surfaces to name a few. [Cain et al., 2004] made an effort to couple
the PRT resonator with the Helmholtz resonator, to reduce the frequency of the PRT tone. The
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recent work of [Raman et al., 2004a], [Raman and Cain, 2002], [Kastner and Samimy, 2002}, and
[Murugappan and Gutmark, 2002] focuses on developing commercially viable high bandwidth actu-
ators for high frequency Active Flow Control (AFC). Several researchers have demonstrated the use of
high frequency actuators in practical applications such as jet impingement tone and cavity tone sup-
pression (see [Murugappan and Gutmark, 2003], [Kastner et al., 2004}, [Raman and Kibens, 2001],
[Raman et al., 2004b], and [Sarpotdar et al., 2005c]).

As mentioned earlier for a PRT to resonate, without any instability trips, one of the prerequisites is
that, jet issuing from the nozzle must be in an under-expanded condition. When the jet is under-
expanded, the pressure at the exit of the nozzle from which it issues is higher than the ambient
pressure. Here, the subsequent expansion of the jet takes place through an alternating train of
expansion fans and oblique shock waves. At low pressures, this train is characterized by its diamond
shape. However, at NPRs above 3.93, the oblique shock gets truncated and gives rise to an additional
disk shock. This shock cell structure is referred to as barrel shock.

The work of [Raman et al., 2004a] studied SPL plots of the PRT with respect to the parameters such
as depth, spacing, and pressure. These SPL plots highlighted the fact that the PRT could resonate
only at certain discrete spacings. However, in this same work, the nozzle pressure ratio was limited
to 3.45 (28.96 x 10* Pa (42 psig) supply line pressure). Hence, it could not capture the response of
the PRT when the jet had a barrel shock cell structure.

Though the exact mechanism by which the PRT produces tones is not clear, it can be said that
shock cell structure, static pressure gradient [Smith and Powell, 1964], and local Mach number just
upstream of the resonator tube inlet [Sarohia and Lloyd, 1979] are some of the governing parameters
which determine whether a PRT can resonate at a particular spacing. The motivation behind the
study of the PRT resonance characteristics reported in this chapter is to shed some light on the
response of the PRT in the context of shock cell structure, and also to see if there is any distinctive
change when shock cell structure changes its shape from diamond to barrel.

[Khanafseh, 2002] conducted a preliminary survey of the actuation signal directivity. However, it
was inconclusive due to a few shortcomings, viz., the work used a fixed low-pass filter setting (37.5
kHz) which made the signals non-uniform in their harmonic content. It turned out that one could
ascribe the directivity change (due to the change in the frequency) in the signal to this non uniform
harmonic content. The analysis was restricted to a few actuation signal frequencies (i.e., 3 kHz,
5 kHz, 9 kHz). Moreover, the work also did not give any special treatment to the harmonics of
the signal. In the present work an attempt has been made to isolate various harmonics in order
to document their individual directivity. It would be interesting to study how the actuation signal
changes its directivity behavior when harmonics are included or excluded. e.g., one must consider
the possibility that the directivity of the 12 kHz signal will be different from that of the 12 kHz
signal which is a second harmonic of 4kHz signal.

4.3 Experimental Methodology

Figure 4.1 (Figure 1.1 repeated for convenience) shows the schematic of a single powered resonance
tube. It consists of 6.35 mm (1/4”) diameter (D) nozzle with a countersink at its exit. The half
angle of the countersink is 41°, whereas the depth is 0.794 mm (1/32”). The countersink is necessary
for the production of high amplitude oscillations. The exit of the nozzle faces the open end of the
closed-open cylindrical resonance tube (whose diameter, d= D). The piston remained fixed while the
resonance tube slid over it to change the tube depth. The distance between the jet and the resonator
tube is referred to as the “integration slot width” or “spacing” (s). The depth of the resonator tube
is referred to as “depth” (I).

For the extended parameter study, the PRT was run at several static pressures ranging from 19.30 x
10* to 39.99 x 10* Pa (28 to 58 psig) in the increments of 1.379 x 10*Pa (2 psig). This corresponds
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Figure 4.1: Schematic diagram of Powered Resonance Tube (PRT) experimental set-up




to NPR range of 2.62 to 4.41 (see [Khanafseh, 2002] for the relationship between the static pressure
and the NPR values; taking into account the pressure losses- this issue was also discussed in Chapter
2). The corresponding mass flow range is 4.93 g/s to 8.30 g/s. At each pressure, the amplitude of
the dominant frequency was recorded using a B&K microphone (Model 4939), placed flush with the
jet exit, for different combinations of spacing and depth. The spacing was varied from 2.54 mm
(0.1”) to 37.47 mm (1.475”) in the steps of 3.18 mm (0.125”) and depth was varied from 0 to 22.86
mm (0” to 0.9”) in steps of 2.54 mm (0.1”). This gave us an SPL map of the PRT for the parameters
of pressure, depth, and spacing discussed in the next section.

When the PRT is set to produce an actuation signal of a certain frequency, along with the funda-
mental frequency, f, it also produces harmonics i.e., 2f, 3f, 4f, etc. As the number of the harmonic

" increases its strength decreases. For practical purposes the third and the subsequent harmonics are
found to be weak compared to the fundamental. Hence, in the frequency directivity study is limited
to the second harmonic along with the fundamental and first harmonic. To study the directivity
of the actuator signal and to distinguish the effect of filtering, phase averaged measurements were
performed on signals ranging from 3 to 12 kHz. In each case a reference signal was obtained through
a microphone (B&K 4939 microphone with 2670 preamplifier), placed flushed with the PRT exit.
It was then passed through an analog Bessel filter (Ithaco 4212) with appropriate filter settings to
get a sinusoidal wave. The measurement signal for the phase averaging was acquired using a Kulite
pressure transducer at several points on the measurement plane with the help of a traverse mecha-
nism. This signal was also then band-passed through different filter settings to separate a particular
harmonic or a set of harmonics for the present study.

A filtering criterion that would keep the harmonic content in the band-passed Kulite signal constant
irrespective of the actuation frequency was necessary. Initially, a constant-percent-bandwidth rule,
i.e., 0.8 (n x f) to 1.2 (n x f) was attempted. However, it was found to include higher harmonics
at higher frequencies, e.g., for n = 5, f = 4kHz, the resulting low-pass setting is 24 kHz, which,
incidentally is the next higher harmonic corresponding to n = 6. To avoid this situation the lower
frequency was chosen to be (n — 0.2) f, and the higher frequency of the band was (n + 0.2)f. This
rule is consistent in the harmonic content of the filtered signal.

The spatial grid resolution for the phase averaging measurements is based on 0.15X (i.e., 6.67 points
per acoustic wavelength). The spatial extent of the phase averaging measurement plane was chosen
such that it can accommodate approximately four wavelengths in the y-direction and two wavelengths
in the z-direction. Here, the origin of the axis is situated at 1/2” (12.7 mm) above the center of
the nozzle exit. This happens to be the mid-point of the front edge of the PRT nozzle housing
block as shown in Figure 4.1. As can be seen in Figure 4.7, for the 4 kHz case the spatial extent
was kept constant for all the cases. However the same approach could not be used with 3 kHz case
(Figure 4.8) since increasing the resolution to capture the harmonics without reducing spatial extent
required excessive computer memory. The filter settings, grid resolution and spatial extent for the
current experiments are summarized in Table 4.1.

4.4 Results and Discussion

4.4.1 Resonance Characteristics of the PRT

Figure 4.2 shows SPL maps of the PRT at various NPRs. Also superimposed on these maps are
schematics of diamond shock cell and barrel shock cell structure. It is to be noted that internal
details of these structures (e.g., position of the conical shock or Mach disk) are not drawn to the
scale. The thick vertical lines in the SPL maps indicate shock cell termination distance {Zspock)-
Here the distance between the two lines is equivalent to the shock cell length (Lgpock) calculated
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Figure 4.2: SPL map of the PRT at different Nozzle Pressure Ratios (NPRs). The white islands
denote the combinations of depth and spacing at which PRT resonates—also referred to as active
spacing. The thick lines show shock cell termination distance as per Tam’s model [Tam, 1995}, thus
facilitates a comparison between active spacing and theoretical shock cell length.
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Table 4.1: Measurement parameters used in the PRT signal directivity study.

. . . Grid Grid Extent
Freq. Harmonic High Pfls s Filter  Low P;ss Filter Resolution (Spatial
(Hz) (Hz) (no. points / A)  Length / A,)
Actual Theory Actual Theory X YA X Z
f 2500 2400 3150 3600 6.487 6.487 3.69 1.84
2f 5000 5400 6300 6600 7.568 7.568 3.17 1.58
3kHz 3f 8000 8400 10,000 9600 7.568 7.568 3.17 1.58
f+2f 2500 2400 6300 6600 7.568 7.568 6.73 3.83
f+2f+3f 2500 2400 10,000 9600 7.568 7.568 10.17 5.54
f 3150 3200 5000 4800 6.812 7.568 3.52 1.58
2f 6300 7200 10,000 8800 5.676 7.568 7.04 2.64
4kHz 3f 10,000 11,200 12,500 12,800 5.676 6.182 10.57 4.40
f+2f 3150 3200 10,000 8800 5.676 5.676 7.04 3.52
f+2f+3f 3150 3200 12,500 12,800 5.676 5.676 10.57 5.28
6kHz f 5000 4800 8000 7200 7.567 7.567 217 1.58
8kHz f 6300 6400 10,000 9600 5.673 5.673 4.2 2.11
9kHz f 8000 7200 10,000 10,800 7.57 7.57 317 1.58
12kHz f 10,000 9600 12,500 14,400 5.67 5.67 7.40 3.70
using the expression proposed by [Tam, 1995]:
vM?2 —
Lshock =3.14 D_z% (4.1)

One can see that the PRT has amplitude peaks (indicated by white islands) only at certain combi-
nations of spacing and depth. These discrete spacings at which the PRT resonates to produce the
tone will henceforth be referred to as “active spacings.” As mentioned earlier, the functioning of the
PRT is closely associated with the shock cell structure. In Figure 4.2 one can see that location of
the active spacing and the shock cell termination distance increases as the NPR increases.

Figure 4.3 shows a comparison of the active spacing and the shock cell termination distance for
the first, second, and third shock cells. It can be seen that increase in the NPR increases both the
active spacing and also the shock cell termination distance. It is interesting to note that for the first
shock the active spacing lies very close to the shock cell termination distance xsp0ck1. However, for
the subsequent shock cells (i.e., second and third) the difference between the active spacing and the
shock cell termination distance seems to increase; although the trend is preserved. The reason might
be due to the inaccuracies involved in the shock cell model that has been used for the calculation;
which assumes a semi-infinite array of shock cells, all of equal strength and length. In reality the
shock cells farther away from the nozzle are weaker and of shorter length than the ones nearer to
the nozzle exit.

When PRT resonates, it resonates at its fundamental mode. Here the nominal frequency of the tone
corresponds to the quarter wavelength of the resonator tube.! However, when it is not resonating
the sound emanating from it is dominated by higher harmonics. Figure 4.4 shows variation in the
PRT tone frequency with spacing, for a fixed depth (I/D = 0.2) at a low (3.33 NPR) and high
(4.29 NPR) NPR. Here to determine whether the PRT resonates at a particular spacing (s/D),

1t is to be noted that the actual tonal frequency might be off from the quarter wavelength prediction; especially
at shallow depths and high NPR, i.e. NPR above 4. At shallow depths, it is the acoustic coupling between the
mass of the fluid within the resonance tube and the integration slot [Kerschen, 2001]; whereas at high NPR, it is the
screeching and non-linear effects which are responsible for this deviation [Kerschen et al., 2004].
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shows diamond shock cell structure (b) NPR = 4.29, i.e., NPR above 4, when the jet shows barrel
shock cell structure.

one needs to check its tonal frequency. If the frequency matches the fundamental mode frequency
(nominal value of 5000 Hz) of the PRT, that spacing can be considered as active spacing. With that
in mind Figure 4.4(a) suggests that, at lower NPR (below 4, when the jet shows diamond shock cell
structure), the PRT resonates only at certain discrete spacings. However, at higher NPRs (Figure
4.4(b)) the fundamental frequency tone can be seen to persist, once the PRT starts resonating. This
suggests that, at higher NPR (above 4, when the jet shows barrel shock cell structure) there does
not exist any preferred active spacing. For high NPRs, once the tube starts resonating, its tendency
is to produce a tone that persists almost till the end of the second shock cell.

The next set of graphs is constructed to see whether the relation of the frequency with respect to
the depth changes as one takes the PRT to its next active spacing. Figure 4.5 shows the plots of
the PRT resonance frequency with respect to the depth for different active spacings and at different
NPRs. It can be seen that irrespective of the active spacing, the relation between frequency and
depth remains the same, i.e., it more or less follows the quarter wavelength theory. One can also see
that, especially at higher NPRs, for the same depth and NPR the subsequent spacings give slightly
higher values of frequency, e.g., for the second active spacing there is approximately a 2.5% to 10%
increase in the frequency.

4.4.2 Actuation signal Directivity

The present work also studies propagation of 3 kHz, 4 kHz, 6 kHz, 8 kHz, 12 kHz actuator signal.
In all the cases the measurement signal was filtered using appropriate band-pass limits so that one
could see how the individual harmonic and/or combination of harmonics propagate. Figure 4.6
shows snap-shots of the 4 kHz actuator signal bandpassed to include its fundamental along with
its first and second harmonic, i.e., 4 kHz (f + 2f + 3f). Here, each sub-figure is a phase averaged
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snapshot of the acoustic field at a phase interval of 30°. The set of 12 sub-figures represent one
acoustic cycle. With the help of grey scale color code one can identify the acoustic pressure at a
particular phase angle of the acoustic time cycle. To find out the propagation direction of the signal,
these snapshots were run in a continuous animation. After repeatedly watching these animations,
strong acoustic lobes (the dark black or white regions enclosed by dotted rectangles) emanating
from the space between the PRT nozzle and resonator tube (integration slot) were identified. Then
these lobes, were tracked through the subsequent frames to identify their propagation direction. For
instance for 4 kHz (f + 2f + 3f) signal, the acoustic field was dominated by two lobes, viz., a lobe
traveling in positive z-direction and a lobe traveling in a diagonal direction. The propagation of
these lobes is also apparent if one studies the changing pattern of the acoustic field in Figure 4.6.
Based on this qualitative observation, signal directivity vector is defined to indicate the propagation
direction of an individual lobe.

Figure 4.7 summarizes propagation of an individual and/or combination of harmonics for 4 kHz
actuator signal. Each figure corresponds to a specific combination of harmonics considered for the
analysis. For example, Figure 4.7(a) represents phase-averaged map of 4 kHz fundamental frequency
actuation signal. The first harmonic of 4 kHz is shown in the Fig. 4.7(b). Each figure is accompanied
by vectors showing the propagation direction of the prominent lobes; enclosed by dotted rectangles.

In Figure 4.7 one can notice that, the fundamental component ( f) of the actuation signal is propa-
gating downstream in the form of two lobes. One of them is propagating parallel to the positive z
direction, while the other is traveling diagonally in an upstream direction. The directivity of the first
(2f) as well as second harmonic (3f) is also predominantly downstream. Actuation signal (f + 2f)
and (f +2f +3f) also showed predominant downstream directivity. For (f +2f) and (f +2f +3f)
cases one can see predominantly downstream directivity accompanied by a vertical traveling lobe as
in the case of fundamental.

In Figure 4.8, the directivity of the fundamental part of the actuator signals at different frequencies
is compared. One can clearly notice that actuator signal directivity changes as the frequency is
changed. For 3 kHz the directivity is predominantly downstream (parallel to the z-axis). The
directivity is also predominantly downstream for 4 kHz, accompanied by a lobe traveling in an
upstream diagonal direction. For 6 and 8 kHz the predominant directivity is still downstream but it
is at an angle with the z-axis. For the 9 kHz case the directivity is vertical. On the other hand for
12 kHz there exists a lobe which also travels in upstream direction. Thus it can be said that, for low
frequency signals, the directivity is downstream. As the frequency increases the directivity tends
toward the vertical. Finally, at very high frequencies, the actuation signal propagates upstream.

According to the inverse square law one would expect the RMS value of the signal to drop monoton-
ically as the actuation signal propagates. However, in certain cases, instead of a continuous drop,
one can see that there is a drop followed by rise in the RMS pressure level. Figure 4.9 shows a set
of such p,s plots for the 4 kHz actuator signal. Each plot represents a specific set of band-passed
harmonics as explained in the caption. One can easily verify that maximum p,ns regions overlap
with the directivity vectors in the corresponding phase averaged snapshots. Thus, these plots further
strengthen the findings regarding signal directivity.

Figure 4.10 shows a plot of pyms values at different locations for 3 kHz fundamental frequency. The
data was taken at the height z/D = 2.8. The fluctuating nature of the p,ns value validates the
previous observation of fluctuating lobes. The graph also shows error bars. One can see the errors
in the SPL is less than 1% at all the locations except y/D = 5.6, where it is almost 50%. This
location is probably in the way of jet exit flow spilling over the nozzle block. Hence one might
suspect hydrodynamic fluctuations caused by the jet exit flow to be responsible for such a large
error at this location.

Next two signals are compared such that the frequency of the band-passed harmonic of one of the
signals is equal to frequency of the band-passed fundamental of the other, e.g., Figure 4.11 shows
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Figure 4.11: Comparison of 6 kHz fundamental and 3 kHz first harmonic PRT signal. (a) 6 kHz
(f): phase averaged snapshot (b} 3 kHz (2f): phase averaged snapshot (c) 6 kHz (f): prms plot (d)
3 kHz (2f): prms plot (PRT jet is flowing form left to right, dotted rectangles denote the prominent
lobes for which directivity vectors are plotted).

a comparison of the 6 kHz fundamental frequency to that of the 6 kHz which is a part of the 3
kHz first harmonic by means of phase averaged plots and prms plots. Here part (a) and (b) are
phase averaged snapshots, whereas part (c) and (d) are prms plots. Here one can see that both the
signals have downstream directivity. However, the 3 kHz first harmonic fades out earlier than 6 kHz
fundamental signal. A similar trend was observed for the 8 kHz fundamental frequency signal and
the 8 kHz as a part of the 4 kHz first harmonic. Even for these two cases, the general directivity
was found to be downstream.

Figure 4.12 shows that the 12 kHz fundamental travels in an upstream direction. In contrast, the 4
kHz second harmonic travels in the downstream direction. A similar trend was observed when the
fundamental part of 9 kHz was compared with the 3 kHz second harmonic. The directivity of the 9
kHz fundamental signal was in a vertical direction. On the other hand the 3 kHz second harmonic
was found to travel in the downstream direction.

1t is to be noted that NPR for all these cases was kept the same (i.e., 3.33); except for the 12 kHz.
For 12 kHz the NPR was increased to 4.04 since the 12 kHz signal was difficult to obtain at low
pressures.

4.5 Conclusions from the Experimental Study of Resonance
Tube Characteristics and Directivity

A comparison between the PRT response and the theoretical shock cell model makes it clear that
there is a correlation between the active spacing (the spacing at which the PRT resonates) and the
shock cell termination distance. An increase in the Nozzle Pressure Ratio (NPR) increases the shock
cell length. This increase in the shock cell length is found to increases the active spacing. Resonance
at discrete spacings is a well documented feature of the PRT, however, at high NPRs where diamond
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Figure 4.12: Comparison of 12 kHz fundamental and 4 kHz second harmonic PRT signal. (a) 12
kHz (f): phase averaged snapshot (b} 4 kHz (3f): phase averaged snapshot (c) 12 kHz (f): prms
plot (d) 4 XHz (3f): prms plot (PRT jet is flowing form left to right, dotted rectangles denote he
prominent lobes for which directivity vectors are plotted).

shaped shock cells truncate to become barrel shaped, the PRT was found to resonate regardless of
the spacing. A similar result was also reported by [Smith and Powell, 1964]; though the exact reason
behind is not clear. It was also confirmed that changing the spacing between the supply jet and the
opening of the resonance tube does not alter the frequency to any significant extent; as long as PRT
depth is kept constant.

From the actuation signal directivity study one can conclude that by varying the actuation signal
frequency, its directivity may change. For lower frequencies the actuation signal propagates pre-
dominantly in the downstream direction of the jet. On the other hand, for higher frequencies the
signal travels toward the upstream direction of the jet. For intermediate frequencies the directivity
is predominantly vertical. One can also observe that, the directivity of the harmonic part of the
signal is different from its fundamental part. The signal directivity study could be important during
the installation and integration of the PRT into a flow control application. The p,n,s plots indicate
the lobes fluctuate in the strength as they move ahead. Hence, if the target area is placed where the
signal loses its strength, the efficiency of the actuator may decrease. Thus along with the orientation,
the distance between the actuator and the region where the signal is focused is also important.

Finally note that this chapter is limited to the “identification” of the key issues in the PRT design
and its integration to guide end applications. To investigate the size effect and to formulate any
scaling laws, further experimentation on PRTs of different sizes is necessary. As far as applicability
of these laws for actual integration is concerned, one must also need to address the effect of mean
flow from the device around which PRTs are situated. The issue becomes more complicated when
arrays of such devices function together, as one would expect in an actual application.
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Chapter 5

Simulation of the PRT

5.1 Overview

Simulations have been performed on PRTs for both straight resonance tubes as well as tubes with
an expansion to generate lower frequencies for a given actuator length.

5.2 Simulation Methodology

5.2.1 Axisymmetric Geometry Idealization

The geometry fabricated in the laboratory has a number of complexities that would require an un-
reasonably large grid and enormous computational resources to simulate. In order to do meaningful
simulations with reasonable computational resource requirements, simplifying approximations are
required. The first such approximation is to assume an axisymmetric geometry and flowfield.

5.2.2 Pressure (Reynolds Number) Scaling

The first simulations are focused on approximating the experiments described in [Raman et al., 2002].
The supply tube typically contains choked flow that vents through the integration slot to atmospheric
conditions. To reduce the computational requirements, the freestream pressure in the simulations
is reduced to 0.03 psia for what will be referred to as “low” Reynolds number simulations, and to
0.3 psia for what will be referred to as “high” Reynolds number simulations. The ratio of the sup-
ply pressure to the freestream pressure is the same as in the laboratory study. The net effect of
this scaling of the pressure is to reduce the effective Reynolds number by a factor of 490 for the
low Reynolds number case, and by a factor of 49 for the high Reynolds number case. There were
also calculations run at an intermediate Reynolds number, and those will be discussed later in the
chapter.

The reduced Reynolds number permits a direct numerical simulation with a more modest grid. With
this scaling, complete numerical solution and post processing of a single ‘case can be completed in
about one week using 2 processors on a 1.6GHz (per processor) AMD system. Simulations at the
laboratory conditions would require a grid with up to 490 times as many points in each of two
dimensions and the simulation times would increase by a factor of as much as 10°.
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5.2.3 Flow Solver

Simulations of the several PRT configurations were performed using the Wind-US flow solver (see
[Bush et al., 1998][Nelson and Power, 2001]{Lankford and Nelson, 2002][Nelson et al., 2004]). Wind-
US is a general purpose Euler and Navier-Stokes solver that is developed and distributed by the
NPARC Alliance (a collaborative effort headed by NASA Glenn Research Center and the Air Force
Arnold Engineering Development Center). Explicit third order Runge-Kutta time integration was
used for the present time-accurate calculations. Based on the work of [Cain and Bower, 1995], the
fifth order scheme was selected as the best available in Wind (the predecessor code to Wind-US)
for acoustic propagation problems. [Cain et al., 1998] successfully applied the Wind code to the re-
ceptivity problem with a good match when compared to linear theory. However, because abutting,
rather than overlapping, grids were employed for the current work, the importance of numerically
transparent zone boundaries dictated use of the third order scheme instead of the otherwise more
accurate fifth order scheme.

Buffer zones were added at all farfield boundaries to minimize any reflections due to imperfections
in the boundary conditions. Viscous wall boundary conditions were employed for all the solid
boundaries in the region of interest except when otherwise stated.

5.3 Simulations of Straight Tube PRT Actuators

Simulations were carried out at three values of the Reynolds number, as discussed previously. Despite
the fact that the Reynolds numbers for these cases differ by as much as a factor of 10, the dominant
resonance frequencies for the cases were nearly identical. Even more surprising was the fact that
the amplitude was also nearly the same. Results are first presented for the resonance frequency
as a function of resonance tube depth l. The simulation results are then compared to theoretical
predictions and experimental results. Following this, differences in the detailed behavior of the
simulation results for the low and high Reynolds number cases are discussed.

The basic geometry for the computation consists of a supply tube feeding an axisymmetric integration
slot and resonance tube. The external geometry and acoustic radiation are also axisymmetric. The
supply tube begins with a 1/2" diameter at the reservoir end and tapers conically to a 1/4" diameter
constant section. The supply tube has a brief flare at the exit into the integration slot. The conical
section and the constant diameter section are both 1/2" long. The resonance tube has a 1/4"
diameter and variable depth. The diameter and width of the integration slot are 5/8" and 1/4",
respectively. See [Cain et al., 2002a] and [Cain et al., 2002b] for additional details.

The resonance frequency obtained in the simulations is plotted as a function of resonance tube
depth [ in Figure 5.1. The geometry utilized in the simulations is axisymmetric, with an inte-
gration slot diameter s = 5d and an integration slot width equal to the resonance tube diameter
(W = d = 1/4”). The resonance frequency is seen to increase as the tube depth ! decreases. The
simulations show little effect of supply pressure on the resonance frequency over the range of 35-
40 psig, though [Cain et al., 2002b] showed that larger variations in supply pressure will affect the
resonance frequency for short resonance tubes.

The resonance frequency predicted by the new refined theory of Kerschen for an open-closed tube
is also plotted in Figure 5.1. The match of the results with the new theory due to Kerschen is very
good. In contrast, while the original QWL theory was adequate for large tube length to diameter
ratios, it breaks down as the resonance tube gets shorter.

In order to develop a better understanding of the behavior at smaller tube depths, a refined theory
was developed [Kerschen, 2001] that considers the acoustic coupling between a resonance tube of
diameter d and depth !, and an axisymmetric integration slot of diameter s and width W. The
no-penetration boundary condition is applied to the closed end of the resonance tube, while the
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Figure 5.1: A comparison of the results of nonlinear computation and a refined linear theory (in-
cluding inertia of the fluid in the integration slot) for predicting the effects of resonance tube depth
on the resonance frequency.

pressure release boundary condition is applied at the outer edge of the integration slot (r = s/2).
The pressure and axial velocity are matched across the interface between the tube and slot. The
theory ignores the presence of the mean flow, but accounts for the inertia and compressibility of the
fluid in the integration slot.

The refined theory was initially developed for comparisons with the experimental data obtained
by Raman at the Illinois Institute of Technology (IIT). In these experiments, the geometry of the
integration slot is rectangular rather than axisymmetric, and the resonance tube is located off center.
Hence, a precise comparison with these experiments cannot be made. In order to estimate an effective
integration slot diameter, note that the distance from the axis of the resonance tube to the four edges
of the integration slot ranges from 0.25” to 0.5”, corresponding to s/d ratios of 2 to 4. Theoretical
predictions were obtained for values of s/d in this range and comparisons were made with the IIT
data. Good agreement between the predictions of the refined theory and the IIT data were obtained
for s/d = 2.8 (see Figure 5.2). This value of s/d may be considered an effective value of s/d for the
IIT early prototype experiments. Essentially, as the tube depth decreases, the inertia of the fluid in
the integration slot becomes more important, lowering the resonance frequency.

In Figure 5.1, the theoretical prediction of the refined theory for s/d = 2.8 is compared to the
resonance frequencies obtained in the simulations. The refined theory is seen to be in much better
agreement with the simulation results than the basic QWL theory. Note that the simulations have
been carried out for the case s/d = 5, compared to s/d = 2.8 for the refined theory. However,
additional theoretical results that have been obtained show that the resonant frequency is not very
sensitive to the value of s/d for the integration slot geometry and resonance tube depths considered
in the simulations. The sensitivity to s/d increases significantly for smaller values of the integration
slot width, as well as for very small tube depths beyond the range explored in the simulations. Also
note that, at very small tube depths, the resonance frequency would likely be influenced more by
the mean flow in the integration slot, which has been neglected in the theory.

Data from the PRT actuator experiments at IIT is presented in Figure 5.2. The quantity plotted is
the actuator resonance frequency, as a function of resonance tube depth [, for a supply pressure of
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Figure 5.2: Experimental data base of actuator frequency versus actuator depth. Also shown are
curves for the basic theory and the refined theory with s/d = 2.8, and one simulation data point.

35 psig and a resonance tube diameter d = 1/4” in. Results are shown for several integration slot
widths. The primary quantity that determines the resonance frequency is seen to be the resonance
tube depth. The width of the integration slot has little influence on the resonance frequency for
large tube depths, but becomes more important as the tube depth decreases.

Figure 5.2 also shows two theoretical predictions for the resonance frequency: the basic QWL theory,
and the refined theory for s/d = 2.8. For long tube depths, the two theoretical predictions are
nearly identical and in good agreement with the experimental data. For smaller tube depths, the
QWL theory diverges from the experimental data. In contrast, the refined theory remains in good
agreement with the experimental data even at small values of the tube depth. Essentially, for small
tube depths, the inertia of the fluid in the integration slot becomes important, significantly reducing
the resonance frequency relative to the prediction of the QWL theory.

In order to avoid excessive cluttering of Figure 5.2, all the resonance frequency data obtained in the
simulations has not been plotted in this figure. Instead, a single simulation point with ! = 0.375”
has been included in Figure 5.2. This simulation point can be seen to be in good agreement with the
experimental results and the refined theory for s/d = 2.8. The agreement between the simulations
and experiments for other values of tube depth can be established indirectly, by comparing the
agreement between simulations and the refined theory for s/d = 2.8 in Figure 5.1, and the agreement
between the experimental results and the refined theory in Figure 5.2.

In addition, note that the simulations determine the amplitude as well as the frequency of the
resonance. Accounting for the pressure scaling discussed earlier, the simulation result shown in
Figure 5.2 corresponds to an amplitude of 160 dB, in fairly good agreement with the laboratory
value of 157 dB.

The next topic to be considered is the influence of Reynolds number on detailed features of the
simulation results. Note that the simulations consider an axisymmetric flow field that is essentially
an unsteady laminar flow. Strong three-dimensionality would be present in a turbulent flow field.
This feature is not included in the present simulations.

Figures 5.3 and 5.4 show the time history of the pressure at the closed end of the resonance tube for
the low and high Reynolds number cases, respectively. The time dependence of the pressure is very
regular for the low Reynolds number case. While the high Reynolds number case retains a strong
periodic component, it also exhibits a significant amount of higher frequency noise. General intuition
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Figure 5.3: Low Reynolds number pressure history of the resonance tube over the first 60,000 time
steps.

would support this result but the magnitude of the difference is striking. A plot of a sample of the
pressure time history from one of the IIT experiments is shown in Figure 5.5. Note that the character
of the pressure time trace is qualitatively very similar to that observed for the high Reynolds number
simulation. The frequency spectrum for the low Reynolds number case has sharp, strongly dominant
peaks at the fundamental and harmonic frequencies, while the high Reynolds number case shows
broader peaks and “hay stacking” around these peaks. A very interesting aspect of this comparison
is that the dominant response frequencies for the low and high Reynolds number cases are virtually
identical. Even more surprising is the fact that the pressure scaled amplitude (SPL) is also quite
similar for the two cases.

Figures 5.6 and 5.7 compare the instantaneous pressure fields of the low and high Reynolds numbers
cases after 60,000 time steps. Once again, the low Reynolds number case is more regular than
the high Reynolds number case. While the sound radiation external to the integration slot shows
some variation with respect to angle, overall the directivity pattern is nearly uniform. Additional
discussion of the directivity patterns, including some interesting details, is in Chapter 4 and in
[Sarpotdar et al., 2005a].

The instantaneous Mach contours after 60,000 time steps are presented in Figures 5.8 and 5.9.
There are several interesting differences between the low and high Reynolds number cases. First,
even though the frequencies are nearly the same, after 60,000 time steps the two cases have drifted
to a significantly different “phase.” This can be seen by looking at the Mach contours inside the
resonance tube in the lower right of each figure. Compression waves propagate along the length of
the resonance tube during each cycle. The compression wave is near the entrance to the tube in
Figure 5.8, while it has nearly reached the closed end of the tube in Figure 5.9. Next, in the low
Reynolds number case the jet along the right-hand side of the integration slot (the small vertical
tube) exhibits no sign of hydrodynamic instability, while in the high Reynolds number case the
jet appears to have undergone a shear-flow instability. Finally, the high Reynolds number case is
seen to have significantly more “bulk” flow impact external to the integration slot than does the low
Reynolds number case.

The final two figures present a comparison of the vorticity fields for the low and high Reynolds
number cases. In the low Reynolds number case (Figure 5.10), the vorticity contours show a quasi-
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Figure 5.4: High Reynolds number pressure history of the resonance tube over the first 60,000 time
steps.
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Figure 5.6: Pressure contours for the low Reynolds number case after 60,000 time steps.
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Figure 5.7: Pressure contours for the high Reynolds number case after 60,000 time steps.
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Figure 5.8: Mach contours for the low Reynolds number case after 60,000 time steps.
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Figure 5.9: Mach contours for the high Reynolds number case after 60,000 time steps.
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Figure 5.10: Vorticity contours for the low Reynolds number case after 60,000 time steps.

steady jet-like structure exiting the integration slot, while in the high Reynolds number case (Figure
5.11) counter-rotating vortex pairs that resemble a “blooming jet” are seen. It must be remembered
that these simulations are axisymmetric, so that these vortices correspond to axisymmetric rings. If
a three-dimensional simulation were performed, the instabilities of these vortex rings would cause a
breakdown to turbulence, resulting in a substantially more diffuse vorticity field.

5.3.1 Effect of Primary Flow

When a primary flow Mach 0.5 stream and external boundary layer are included in the model, a
3/8" wall perpendicular to the surface is inserted near the upstream boundary of the computational
domain. The purpose of the wall is to thicken the boundary layer and increase the Reynolds number.
The flow reattaches before reaching the integration slot. With the present grid the boundary layer
flow is still stable according to linear theory (Res» = 320 at the resonance tube). Higher Reynolds
numbers cannot be run with the present grid without degrading the resolution of the unsteady shock
motion. Grid refinement and algorithm studies suggest the present results are invariant to grid and
algorithm for modest changes.

The presence of a Mach 0.5 freestream flow and boundary layer external to the PRT reduces the
resonance frequency by 12% and increases the SPL by 3dB, relative to the no primary flow case.
These changes are caused by the modified acoustic impedance of the integration slot exit in the
presence of the external stream, and possibly also by changes to the mean flow within the slot.
The pressure history for this case at the same spatial point as the no freestream case is given in
Figure 5.12. The freestream pressure and supply pressure were both doubled for the case displayed
in Figure 5.12; the pressures were increased to raise the Reynolds number. Unfortunately the
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Figure 5.11: Vorticity contours for the low Reynolds number case after 60,000 time steps.
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Figure 5.12: Pressure oscillations on the wall in a Mach 0.5 freestream and boundary layer driven
from below by a powered resonance tube.

Table 5.1: Frequency as a function of the nozzle pressure ratio. “NR” denotes no resonance.

NPR | Frequency (Hz)
2 NR
2.5 NR
3 6491
3.5 7620
4 7938
4.5 NR
5 NR

Reynolds number of the boundary layer flow is still too low for amplified instability waves to exist
in the external boundary layer.

5.3.2 Effect of Nozzle Pressure Ratio

Finally we discuss the effects of nozzle pressure ratio (NPR) on the behavior for a “short” resonance
tube which has a “length to diameter ratio” of 1.5. At an NPR of 2.0 the flow exits the supply
jet at nearly sonic velocity and no resonance develops. Increasing the NPR to 2.5 produces a
supersonic exit flow but still no resonance develops. At NPRs of 3.0, 3.5, and 4.0, strong resonances
develop. At higher NPRs the flow again becomes steady after the transient dies out. These behaviors
are illustrated in Table 5.1 and Figure 5.13. The experimental studies of [Khanafseh et al., 2002]
reveal that in some cases a change in NPR can produce mode shifts with higher harmonics becoming
dominant, though usually with reduced amplitude. The computational resolution may be insufficient
to capture the shift to the experimentally observed third harmonic.
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Figure 5.13: Resonance frequency as a function of nozzle pressure ratio (NPR) for a “shallow”
resonance tube.

5.3.3 The Effect of Including a Turbulence Model

A simulation was made with the SST turbulence model and compared with the same case run as a
laminar flow. The turbulence model had little effect on the dominant resonance frequency and the
amplitude was only slightly affected. Since the impact of the SST turbulence model was negligible
in the case examined, no further study was done regarding the use of turbulence models.

5.4 Simulation of Helmholtz Based PRT Actuators

5.4.1 Geometry of the Helmholtz PRTs

In evaluating the significance of the Helmholtz concept applied to the PRT, four different geometric
configurations have been examined. One had a straight resonator tube (i.e. no Helmholtz resonator),
and the other three had Helmholtz resonators of various depths. A schematic is shown in Figure
5.14. While the topology of the detail drawing is correct, the actual dimensions are not those used
for the simulations. For this work, the neck length was 0.375”, and the radius was 0.06275”. The
expansion transition was 0.0875” in length, widening to the full radius of the Helmholtz resonator
of 0.125".

The straight tube geometry consists of the same “base configuration” without the expansion and
resonator sections (i.e. only the neck portion is present). The chamber length (l.~including expansion
region), effective length (I, as per the Kerschen theory), and the ratio of neck length to total length
(an, from equation 6.17) are summarized in Table 5.2 for all four configurations.
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Table 5.2: PRT Geometries

Configuration Type | l(in) [less(in) | an
1 Straight 0.0 0.427 1.00
2 Helmholtz | 0.1875 | 0.665 | 0.718
3 Helmholtz | 0.375 0.853 | 0.560
4 Helmholtz | 0.75 1.228 | 0.389
Air F%Iow Resonator rics,‘t’zr?le

3

1
cirflow _—=—

%

1
2

s :

Figure 5.14: Two resonators and detail drawing of a Helmholtz resonator (dimensions in inches)




Table 5.3: Summary of Results

Case Config. NPR Peak f (Hz) p},,,(psi) OASPL (dB) Peak SPL (dB) € (eqn. 6.16)

1 1 3 7143 3.61x 107! 161.9 159.6 1.43
2 2 3 3214 9.46 x 1072 150.3 146.1 1.00
3 3 3 2095 5.98 x 10~* 146.3 139.3 0.84
4 4 3 1500 3.27 x 10~2 141.0 136.4 0.86
5 1 2.38 7429 2.67 x 1071 159.3 159.1 1.48
6 2 2.38 3571 5.36 x 102 145.3 141.8 1.11
7 3 2.38 2280 3.69 x 1072 142.1 140.4 0.91
8 4 2.38 1597 2.22 x 1072 137.7 134.0 0.92

5.4.2 Operating Conditions Studied

Unless otherwise identified, viscous wall boundary conditions were employed for all the solid bound-
aries in the region of interest. Two nozzle pressure ratios (the air supply pressure versus freestream
pressure) were used for these cases: 3.0 and 2.38. Consistent with previous simulations for this
project, these cases were run on axi-symmetric grids with reflection boundary conditions applied at
the axis of rotation. To minimize grid-related errors when comparing the results, the grids employed
for these cases were all identical except for the Helmholtz resonator chamber grid (if any). No
turbulence model was used for these cases.

5.4.3 Results

Numerical simulations allow an exploration of the detailed flow physics and facilitate a better un-
derstanding of the dominant mechanisms involved in the phenomena of interest. The results provide
details of the unsteady flow inside the actuator, as well as features of the external acoustic radiation
field. The results for the first eight Helmholtz PRT cases are summarized in Table 5.3. Tt is readily
apparent that the Helmholtz-based PRT designs are indeed able to produce lower frequency tones
in a more compact space than the straight tube alone. Comparing Case 4 to Case 1, one finds that
a resonator only three times longer than the straight tube was able to produce dominant tones at
one fifth of the frequency. Unfortunately, this increased bandwidth comes at the cost of decreased
amplitude, as a steady drop in the peak SPL is observed from almost 160 dB for Case 1 to less
than 137 dB for Case 4. Indeed, the RMS of fluctuating pressure for Case 4 is an order of mag-
nitude less than that of the straight tube case. In addition to the overall noise decreasing, as the
expansion length of the Helmholtz resonator is increased, a larger portion of the energy goes into
the broadband, resulting in a larger difference between the OASPL and the peak SPL values.

The values of the Helmholtz number in the simulations are plotted against the predictions from the
Kerschen theory in Figure 5.15. The plot shows that the simulations and theory have very good
qualitative agreement. Quantitatively, however, the simulations are predicting an € slightly lower
than the theoretical values for all but one of the cases simulated here. It is not yet clear why this
is the case. It is possible that the limitations of the axi-symmetric and laminar assumptions are
hampering the simulations. Alternatively, it may be that neglecting the mean flow in the theory
is causing some error. Also, the end corrections for the neck are based on semi-infinite range for
the flared neck. Since the flare only extends a short distance, this assumption might need to be
modified.
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Figure 5.15: Comparison of the simulation results to the Kerschen theory predictions

Pressure traces and spectra

Time histories of the pressure were obtained at a point on the outside of the PRT, just downstream of
the integration slot. This data has been processed to obtain information about the spectral content
of the radiated acoustic field. The results are plotted in Figures 5.16 through 5.19 for cases 1 to 4.
Comparing the four figures, one can easily see that the SPL levels drop considerably as the PRTs
become larger. Also, note that the pressure traces appear more “noisy” for the Helmholtz based
PRTs, as opposed to the straight tube, which has a more regular signal.

Because of the differences in frequency and magnitude in Figures 5.16 through 5.19, it can be difficult
to compare the different cases to ascertain whether or not the fundamental spectral behavior is
changing. One means of overcoming this is to rescale the curves to enable plotting in a completely
non-dimensional space. Hence, Figure 5.20 shows normalized PSD as a function of mode number
the four cases with NPR. of 3. This plot clearly shows that the straight tube is concentrating more
of its energy in the vicinity of the primary tone; higher modes have relatively lower peak values for
this case than for the Helmholtz based PRT designs. Also apparent is that there is no clear trend
in terms of intermodal “noise” or higher modal peak amplitude among Cases 2, 3, and 4. Case 3
appears to be “noisier” than either Case 2 or 4, in the sense that the curves between the modal
peaks show more oscillations. In terms of peak amplitudes, the three cases appear to be very similar
to each other when normalized by the total energy in the spectrum. This would suggest that the
same physical phenomena are governing the behavior of all three Cases. This in turn suggests that
a single theory should be able to predict this behavior.
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Figure 5.16: Pressure trace and narrowband SPL near the integration slot exit for Case 1
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Figure 5.17: Pressure trace and narrowband SPL near the integration slot exit for Case 2
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Figure 5.18: Pressure trace and narrowband SPL near the integration slot exit for Case 3
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Figure 5.19: Pressure trace and narrowband SPL near the integration slot exit for Case 4
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Figure 5.20: Spectral power distribution comparison of four PRT geometries.

Cyclic behavior

Detailed time histories of the flow were gathered for both Case 1 and Case 3. Snapshots of the
flow at various points in a cycle are shown for Case 3. The first series of plots shows the pressure
in the nearfield region outside the PRT (Figure 5.21). The six snapshots show the progress of the
sound waves as they travel for one full cycle of the radiated signal. Note that the “starting” and
“ending” points are just arbitrary points in the cycle, chosen for convenience rather than any physical
significance. In addition to the obvious spherical waves emitting from the slot, there appear to be at
least two different, more directed signals. The more obvious of the two signals travels downstream
in an arc between the z-axis and about 45° up from it (measured from the slot exit). These waves
are especially visible in Figure 5.21(d), but are also noticeable in 5.21(b) and 5.21(c). In Figure
5.21(a) and 5.21(f), a similar, but perhaps less obvious, set of waves heads upstream, also in an arc
between the z-axis and roughly 45° up from it .

Figure 5.22 shows similar snapshots of pressure, but this time, the scale has been expanded to focus
on the activity in the integration slot. The most obvious feature of this sequence of snapshots is
the presence of the trapped vortex sitting at the mouth of the integration slot. In Figure 5.22{c),
5.22(d), and 5.22(e), one can see a new vortex emerging from the resonator, moving up the slot,
strengthening, and finally displacing the original vortex.

Adjusting the contour levels yet again, Figure 5.23 focuses on the pressure in the air supply nozzle and
the resonator. While the air supply appears to experience very little pressure variation throughout
the cycle, the resonator shows a strong pumping action. In Figure 5.23(a), the chamber has just
emptied, leaving a low pressure region which then begins sucking in new fluid in 5.23(b). The
chamber gradually fills in 5.23(c) until, by 5.23(d), it begins to exhaust into the slot. The blowing
continues in 5.23(e), until the cycle begins again in 5.23(f).

A different perspective on the dynamics of the resonator/slot interactions is seen in the snapshots
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(a) "Initial” state, t = t0 (b)t=t0+T/5

(c)t=t0+2T /5 (d)t=t0+3T/5




(a) "Initial" state, t = t0 (b) t =t0 + T/5

(c)t=t0+2T/5 (d)t=t0+3T/5
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(a) "Initial" state, t = t0 (b)t=t0+T/5
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Table 5.4: Comparison of simulation versus theory for two geometries

Case # / Type of Data | Helmholtz Frequency | Screech Frequency
9 / Simulation 2,264 Hz-decaying Not observed
9 / Theory 2,210 Hz N/A
10 / Simulation 2,500Hz-decayed 15,454Hz dominant
10 / Theory 1,753 Hz 15,720 Hz

in Figure 5.24, which shows the vorticity contours throughout the cycle. In the first snapshot, the
outflow from the resonator is just changing to inflow as the chamber starts to refill. The trapped
vortex sitting at the slot exit is being fed by a shear layer which emerges from the air supply line,
crosses to the far side of the slot, and then bends upward and heads for the slot exit. In 5.24(b)
and 5.24(c), the chamber is pulling in fluid, which then separates as it passes the expansion section
and enters the Helmholtz resonator. The shear layer which feeds the vortex at the slot exit has
been disrupted, causing it to weaken. In 5.24(d), the chamber has begun pushing out the fluid it
ingested. Interestingly, however, the “replacement” vortex that is forming to take the place of the
original vortex at the slot exit is not created by fluid emerging from the cavity (at least not directly).
Instead, the vortex appears to be forming due to instabilities that form in the weakened shear layer
which was feeding the trapped vortex. In 5.24(d), the new vortex is traveling up the slot until,
in 5.24(e), it can be seen displacing the original vortex, which, greatly diminished is shown being
pushed out in 5.24(f) (as well as 5.24(a)).

5.4.4 Nonlinear Effects

A big picture comparison between the simulations and the theory for two different geometries is
presented in Table 5.4. This data corresponds to a geometry with s/D = 1 (integration slot width to
supply jet diameter) and a Nozzle Pressure Ratio (NPR) = 3.52. The simulation Reynolds numbers
were “low” for these cases (freestream pressure was 0.03 psia). The supply jet and Helmholtz neck
diameter were both 1/4” with a Helmholtz backing cavity diameter of 1/2”. The main points to
be made from the data in Table 5.4 are that in case 9, the Helmholtz response for the simulation
corresponds very closely with the theory (no screech present), while in case 10 screech is present and
the agreement between theory and simulation is not nearly as close.

We get more of an idea of the behavior of the Helmholtz system from the data contained in Table
5.5. The tabulated data corresponds to s/D = 2. The simulation Reynolds numbers were “medium”
for these cases (0.12 psia. freestream pressure). The supply jet and Helmholtz neck diameter were
both 1/8” for these cases with a Helmholtz backing cavity diameter of 1/4”. The main themes that
can be observed from the data in Table 5.5 include the Helmholtz response predicted by theory is in
reasonable agreement with experiment and computation when screech is not present. Also, increasing
NPR above 3 decreases the likelihood of a Helmholtz response and increases the likelihood of screech.
And finally, the presence of screech seems to shift the Helmholtz response if it is present.

Figures 5.25 and 5.26 show the pressure time histories for simulation cases 9 and 10. The pressure is
monitored outside the integration slot about 1/4” from the edge of the slot. Figure 5.25 shows the
development of a very periodic signal with weak damping, but as Table 5.4 showed, the Helmholtz
frequency matches theory very well. At higher Reynolds numbers this unsteady response would
likely not be damped. In Figure 5.26 the signal starts to give a Helmholtz response, but this gives
way to a screech response of much higher frequency. As Table 5.4 showed, the screech frequency
matches the predicted frequency of a screeching free jet. However, this may be a coincidence since
the presence of the resonance tube can be expected to alter the jet shock structure and therefore
the screech frequency.




(2) "Initial" state, t = t0 (b)t=t0+T/5

()t=t0+2T /5 (d)t=t0+3T/5

(e)t=t0+4T /5 (f) t = t0 4 T (back to initial state)

Figure 5.24: Snapshots of vorticity in the nozzle, slot, and resonator from one operational cycle of
the PRT
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Table 5.5: Comparison of Simulation, Theory, and Experiment

Case # /type I NPR [ Helmholtz freq | Screech freq Peak SPL
11 / Experiment 3 2,500 Hz Not observed 137 dB
11 / Simulation 3 1,964 Hz Not observed 142 dB
11 / Theory N/A 2,290 Hz Not calculated | Not predicted
12 / Experiment | 4.67 ~ 4,000 Hz ~18,000 Hz 137 dB
12 / Simulation | 4.67 ~2,700 ~17,500 Hz Not measured
12 / Theory N/A 2,290 Hz Not calculated | Not predicted
13 / Experiment 6 None observed 714,000 Hz 139 dB
13 / Simulation 6 None observed 718,000 Hz | Not measured
13 / Theory N/A 2,290 Hz Not calculated | Not predicted
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Figure 5.25: Pressure time history for simulation case 9 measured about 1/4” downstream of the
integration slot, 60,000 timesteps.
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Figure 5.26: Pressure time history for simulation case 10 measured about 1/4” downstream of the
integration slot, 120,000 timesteps.

Figure 5.27 presents the pressure time history of simulation case 11. A strongly periodic behavior is
apparent in the pressure time history. The signal is a superposition of a primary Helmholtz response
and a higher frequency at roughly three times the Helmholtz frequency. The frequency content
of Figure 5.27 can be examined by taking the Fourier transform in time, leading to the frequency
domain plot shown in Figure 5.28. There are two features in Figure 5.28 that deserve comment.
The first feature of significance is the width of the peaks. The relatively broad peaks are due to the
relatively short period in which data was collected and the fact that during this short time there was
some variation in the structure of the primary waveform, though Figure 5.27 shows a very repeatable
pattern.

Figure 5.29 shows instantaneous pressure contours for simulation case 11. The pressure is normalized
such that the freestream value is the inverse of the ratio of specific heats. The freestream pressure is
0.12 psia. This value of pressure, and therefore the Reynolds number, is intermediate between the -
high and low Reynolds number cases shown earlier. Thus, the contours look very consistent with
what we should expect for an intermediate Reynolds number case.

5.5 Conclusions regarding PRT Simulations

The simulations of straight tube actuators show that the dominant frequencies, amplitude and direc-
tivity of the PRT actuator output field are largely unaffected by the factor of 10 increase in Reynolds
number considered here. However, the increase in Reynolds number is shown to substantially affect
the width of the resonance peaks, and the vorticity distributions and flow details more generally. The
effort to integrate simulations, theory, and experiment has been fruitful. There is general agreement
between these three methods in terms of the frequency, amplitude, and directivity of the actuator
output field, to the extent that they have been examined.

The present study shows that a Helmholtz based PRT offers a method of substantially improving
applicability when there are space constraints. Simulation results for such designs were compared
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Figure 5.27: Pressure time history for simulation case 11, 90,000 timesteps.
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Figure 5.28: The Fourier transform of the pressure time history for simulation case 11.
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Figure 5.29: Instantaneous pressure contours for case 11 after 120,000 time steps.

to theory and experiment. At low NPR values a Helmholtz response in simulations and experiments
shows good correspondence with theory. At higher values of NPR the computational and experi-
mental comparisons to theory suggest that non-linear effects must be considered and that screech
in particular can suppress or shift the Helmholtz response. A useful synergy has been demonstrated
between simulation, theory, and experiment.

Simulations were conducted of Helmholtz PRT geometries to ascertain the utility of using a Helmholtz
resonator in place of a straight tube in order to lower the resonant frequency without increasing the
size excessively. In addition, the simulations were compared to the theory of Kerschen to further
assess the capabilities of that theory and, conversely, to assist in verifying the simulations. As
predicted by the theory, it was found that the Helmholtz resonator based PRTs did lower the fre-
quency of the primary mode, but the peak sound pressure level was also substantially decreased.
The Kerschen theory and the simulations, while qualitatively in agreement, showed somewhat more
error than in previous work. Other areas which could prove important include the resolution in the
resonance cavity and integration slot. Finally, the axi-symmetric assumption could be limiting the
accuracy of the solution.
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Chapter 6

Helmholtz PRT Theory

6.1 Introduction

Active flow control (AFC) offers the promise of performance improvements for a number of aerospace
applications. AFC has been shown to improve mixing in shear flows [Wiltse and Glezer, 1998],
reduce or eliminate flow separation [Greenblatt and Wygnanski, 2000}, and suppress resonance tones
in cavities [Stanek et al., 2001}. AFC applications require actuators that are capable of producing
high-amplitude unsteady fields. One candidate actuator technology is the powered resonance tube
(PRT) actuator.

The PRT actuator consists of an open-closed quarter-wavelength tube resonator, excited by a high-
speed jet that impinges normally on the open end of the tube. An integration slot lies between the
exit plane of the driving jet and the open end of the resonance tube. The unsteady flow produced
by the PRT actuator exits from the open edge of the integration slot. Under proper geometric and
flow conditions, the PRT actuator produces a high-amplitude unsteady field. Additional information
concerning PRT actuators may be found in [Kastner and Samimy, 2002], [Raman and Cain, 2004]
and [Raman et al., 2004a].

In some applications that require relatively low actuator frequencies, geometrical constraints may
be incompatible with the use of a quarter-wavelength resonance tube. Note that the resonance tube
length is inversely proportional to the resonant frequency, and is therefore quite long for the case of
low resonant frequencies. For example, if one considers a resonant frequency f = 200 Hz in air at
standard temperature, the quarter-wavelength is A,c/4 = ¢/4f = 1.4 ft.

A Helmholtz resonator can achieve low frequencies without such large linear dimensions, by com-
bining a narrow neck with a backing cavity of much larger cross section. Recall that the resonant
frequency of a simple spring-mass system is given by w = (k/m)'/2, where k is the spring constant
and m is the mass. For the Helmholiz resonator, the fluid in the narrow neck provides the mass,
while the compressibility of the fluid in the backing cavity provides the spring constant. The fre-
quency can be lowered by increasing the mass in the neck, or by increasing the capacitance of the
backing cavity.

The above discussion suggests that the concept of a Helmholtz PRT, in which the quarter-wavelength
resonance tube is replaced by a Helmholtz resonator, merits investigation as an alternative to the
standard PRT design for the case of low frequencies. In this chapter, an analytical investigation
of Helmholtz resonator properties is presented, in order to provide guidance in the selection of
appropriate geometries for a Helmholtz PRT. The influence of resonator geometry on the resonant
frequency and the capacity of a Helmholtz resonator is examined.
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Two theories for Helmholtz resonator behavior have been developed, the axial-wave theory and the
low-frequency theory. In both theories, the cross-sectional dimensions of the resonator neck and
cavity are assumed small compared to the acoustic wavelength. This allows transverse wave motion
to be ignored in the analysis, leading to significant simplifications.

In the axial-wave theory, the cross-sectional dimensions of the neck and cavity are assumed small
compared to A, but the lengths of the neck and cavity are assumed to be of the order of A,.. Hence,
the axial-wave theory also predicts the behavior of a quarter-wavelength resonance tube, in the limit
where the cross-sectional areas of the neck and the cavity are equal. Thus, the axial-wave theory
can be used to investigate the transition from Helmholtz behavior to quarter-wavelength behavior,
as the geometry of the resonator is varied.

In the low-frequency theory, the lengths of the neck and the cavity are also assumed to be small
compared to the acoustic wavelength. This may be true in many applications, and leads to the
simplest formulas. However, the low-frequency theory has the disadvantage that the transition from
Helmholtz behavior to quarter-wavelength behavior, as the resonator geometry is varied, cannot be
explored with this theory. A second disadvantage is that the low-frequency theory over-predicts the
resonant frequency, although the over-prediction is fairly modest for conditions of interest for PRT
actuator applications.

The axial-wave theory is developed in section 6.2, and the low-frequency theory is developed in
section 6.3. The influence of Helmholtz resonator geometry on the resonant frequency, mode shape
and capacity is examined in section 6.4.

Based on the results presented in this paper, resonator geometries were chosen for numerical simula-
tions and laboratory experiments. A preliminary comparison of theoretical predictions to numerical
simulations is presented in subsection 6.4.4. Additional comparisons with numerical and experimen-
tal results are presented in [Cain et al., 2004].

6.2 Axial-wave theory for a Helmholtz resonator

For the axial-wave theory, one can assume that the cross-sectional dimensions of the neck and cavity
are small compared to the acoustic wavelength, but the lengths of the neck and cavity may be of
the order of A,.. In this case, only ‘plane’ acoustic waves propagate in the neck and cavity—the
higher-order transverse modes are cut-off and decay exponentially with axial distance in the neck
or cavity. Thus, three-dimensional effects are important only in the vicinity of the junction between
the neck and the cavity, and in the vicinity of the entrance to the neck. The length scale for these
local regions is the neck diameter d,;, which is assumed small compared to the acoustic wavelength.
Hence, the field in these local regions behaves incompressibly. The influence of these local regions
on the system behavior can then be accounted for by adding end corrections to the neck length,
as discussed in subsection 6.2.1. In the analysis that follows, the neck length !, includes the end
corrections for the neck entrance and for the junction with the backing cavity.

Assuming that the frequency is high enough that the viscous Stokes layer thickness of O((v/w)'/?) is
small compared to the cross-sectional dimensions of the neck, acoustic perturbations of a base state
with pressure pp, density po and speed of sound ¢ can now be considered. The pressure and density
perturbations are related by the isentropic equation p = ¢2p. For one-dimensional wave motion, the
continuity and momentum equations for the acoustic perturbations then take the form

dp/ Bt + poctu/dz =0 and podu /Bt = —0p/ 0z, (6.1)

where ¢ = ypp/po = YRT. These equations can be combined to obtain the one-dimensional wave
equation for the acoustic pressure,

20%p/0z? — B%p/Ot? = 0. (6.2)
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For time-harmonic motion, the solution to the wave equation can be expressed as a superposition of
forward- and backward-propagating plane waves

p(z,t) = [C1e™*® + Coe*=]e "t (6.3)
where k = w/c and C; and C; are arbitrary constants.

For convenience, choose the origin of the coordinate system at the entrance to the neck (including the
end correction for the neck entrance). The neck length is I, (including both end corrections) and the
cavity length is [.. The rear surface of the cavity is assumed to be rigid, so that the one-dimensional
acoustic field in the cavity has the standing wave form

plz,t) = By cosk(x — I, — l)e % (6.4)

Note that (6.4) satisfies 8p/0z = 0 at the back of the cavity (z = I, +1.). The constant B, is
arbitrary at this stage.

The acoustic field in the neck is a superposition of forward- and backward-propagating plane waves,

p(a,t) = %(Bze"“ + Byehe)emiut, (6.5)
The matching conditions at the junction between the neck and the cavity are continuity of pressure,
%(Bgem" + Bze~ ") = B, coskl,, (6.6)

and continuity of volume flux,
%An(Bzeik'" — Bgze~ Iy = _jA B, sinkl,, (6.7)

where A, and A_ are the cross-sectional areas of the neck and cavity, respectively. Finally, a pressure
boundary condition at the entrance o the neck, say p = p.e~** at & = 0 is specified. This yields

%(B2 + Bs) = pe. (6.8)

The cases of free response (p. = 0) and forced response (p. # 0) of a Helmholtz resonator are
examined in subsections 6.2.2 and 6.2.3, respectively.

6.2.1 End corrections

As mentioned above, three-dimensional effects occur in the vicinity of the junction between the neck
and the cavity, and in the vicinity of the entrance to the neck. These three-dimensional effects
are associated with the expansion of the flow in exiting the neck, or the contraction of the flow in
entering the neck. The three-dimensional flow adds additional inertia to the system, which can be
accounted for by adding an end correction Al;, to the geometric neck length [, . (see [Pierce, 1989},
pp. 341-350). The effective neck length is then

lneff = l"geom + Aln' (6-9)

The end correction Al, can be calculated using incompressible potential flow theory, or estimated
using upper and lower bounds arising from kinetic energy principles for incompressible potential
flow. Here, results from Pierce are quoted for specific cases of interest.

Consider axisymmetric geometries. For a neck length I, ., that is short compared to the neck
diameter d,,, the local flow is similar to flow through a circular orifice in a plate of zero thickness.
Using the analytical solution for the potential flow in this case, the end correction is given by

Al = %wdn = (0.7854d,,. (6.10)
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This expression accounts for the additional inertia due to the three-dimensional flow at both ends of
the neck. Next consider neck lengths that are large compared to the neck diameter. If the geometry
of the neck end has an infinite flange, the end correction (for one end) is

Al, = 0.41d,. (6.11)

At the other extreme, if the geometry of the neck end is that of a thin-walled tube protruding into
open space, the end correction (for one end) is

Al = 0.305d,,. (6.12)

The end correction for the thin-walled tube protruding into open space is smaller than that for the
flanged tube, because the flow outside the tube has a greater area to expand into and the velocity
decays more rapidly. Hence, the flow field outside the tube end has less total inertia in this case.

The geometry currently being considered for the Helmholtz PRT actuator has a flange at both ends
of the neck. If the neck length is long compared to the neck diameter, the effective neck length is
then

Inee = Ingeom +0.82dy. (6.13)

In order to simplify the notation in the remainder of this report, the symbol I, is used to denote the
effective neck length (including end corrections), rather than the geometric neck length.

Teff

6.2.2 Axial-wave theory: free response of a Helmholtz resonator

The natural frequency for the Helmholtz resonator is obtained by setting the pressure p, at the neck
entrance to zero. One then has B; = —Bj, and the pressure and volume flux matching conditions
at the junction between the neck and the cavity provide a homogeneous set of linear equations for

By and By,
coskl, —isinkl, B ]_
[ isinkl, 42 coskly ] [ B |=° (6.14)

Setting the determinant of the matrix in (6.14) to zero, one obtains a transcendental equation for
the natural frequencies of the Helmholtz resonator

A
—Aﬁ cos kly, cos ki, — sin kl, sinkl, = 0. (6.15)
C

This equation has an infinite number of roots k; = w;/c, j = 1,2,3,.... The main interest is in the
first root, corresponding to the lowest natural frequency of the Helmholtz resonator.

For convenience in interpreting the results, one can recast the transcendental equation in terms of a
Helmholtz number

Q=wl/e, (6.16)

where l = I, +1, is the total effective length of the Helmholtz resonator, including the end corrections
at both ends of the neck. Setting

ap =l /l, ac=1./1 ‘ (6.17)
and utilizing trigonometric identities, we obtain
F(Q)=0, (6.18)
where
Ap A,
F(Q)= |1+ < cosQ— |1- R cos(2a, —1)Q (6.19)

and the relationship a, + a. = 1 has been used to eliminate a.
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Considering the Helmholtz resonator eigenvalue relationship {6.18) as an equation for § as a function
of oy, implicit differentiation can be used to show that the minimum value of Q2 is obtained for
a, = 1/2. Hence, for a Helmholtz resonator of fixed length, the minimum frequency is obtained
for the case I, = I, (where [, contains the neck end corrections). Setting o, = 1/2, one can solve
(6.18) to obtain the following expression for the minimum resonant frequency as a function of the
area ratio,

1- A, /A
14+ A, /A,

Note that, for A,/A, < 1, the resonant frequency of a Helmholtz resonator is lower than that of a
quarter-wavelength tube of the same length. Substantial reductions in the resonant frequency can
be obtained when A, /A, is sufficiently small.

Q=cos} { ] for oa,=1/2 (6.20)

Note that (6.19) is unchanged by the substitution ¢, — 1 — ap. Thus, the function Q(ay) is
symmetric about o, = 1/2. If one recalls that a, = 1 — ay, it can be seen that the resonant
frequency of the Helmholtz resonator is unchanged when the lengths of the neck and cavity are
interchanged. While this interchange does not affect the resonant frequency, it does affect the
capacity as will be seen in the following subsection.

Finally, the eigenvalue relationship for a quarter-wavelength resonance tube is obtained from (6.18)
by setting A, = A.. The dependence on a, disappears in this limit and the eigenvalue relationship
reduces to cos 2 = 0, with roots Q; = (2 — 1)7/2, j =,1,2,3,....

In section 6.4, numerical results are presented that illustrate the variation of the resonant frequency
of a Helmholtz resonator, as a function of the cavity area ratio A./A, and the non-dimensional neck
length a, = I, /1.

6.2.3 Axial-wave theory: forced response of a Helmholtz resonator

The unsteady volume flux produced by a PRT actuator is due primarily to the unsteady volume
flux stored by the resonator. Thus, in order to assess the suitability of a Helmholtz resonator as a
replacement for the quarter-wavelength tube of a PRT actuator, one must also consider the capacity
of a Helmholtz resonator.

The capacity of the resonator is defined as the unsteady volume flux which it stores, for a given
external pressure fluctuation p.e~**. Clearly, the capacity is proportional to the cross-sectional area
of the mouth of the resonator (A, in the case of a Helmholtz resonator), and also to the amplitude p,
of the external pressure field for the case of a linear system. In order to remove these dependencies,
the non-dimensional capacity is defined as

C=2C,0. (6.21)

Pe

In deriving an expression for the resonant frequency in subsection 6.2.2, the external pressure p, was
set to zero. Therefore, according to the analysis of subsection 6.2.2, the capacity is infinite at the
resonant frequency, w = w;. Essentially, in the absence of any damping mechanisms, finite velocity
fluctnations can be maintained with no forcing from the external field. If damping mechanisms
such as fluid viscosity and acoustic radiation to the far field were incorporated in the modeling,
the unforced ‘resonant response’ would be a temporal oscillation that decays exponentially in time,
corresponding to a complex value of w;. In this situation, a time-harmonic forcing field p.e~*t would
be required in order to obtain a time-harmonic unsteady field in the resonator, and the amplitude
of the response (or the capacity) at the resonant frequency would depend on the damping in the
system. Estimates of resonator damping may be considered in future work.

An alternative is to consider the capacity at frequencies near, but not equal to, the resonant frequency
w1. The following arguments suggest that this measure of capacity may be relevant to the operation
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of a PRT actuator. One viewpoint is to consider the unsteady motion in the resonance tube as a
response due to forcing by the unsteady field of the supply jet within the integration slot region.
A second viewpoint is to consider the PRT actuator as a coupled system involving two resonant
components: the unsteady jet field in the integration slot, and the field in the resonance tube. Such
coupled systems typically have resonant frequencies that are close to, but not exactly equal to, the
resonant frequency for one of the resonant components. Both these viewpoints suggest that the
capacity of the resonator (Helmholtz or quarter-wavelength tube) at frequencies close to, but not
equal to, the resonator natural frequency w, is of interest.

In order to determine the capacity of a Helmholtz resonator, one simply repeat the analysis of
subsection 6.2.2, assuming that the external pressure p. is non-zero. Substituting the boundary
condition (6.8) at the neck entrance into the matching conditions (6.6, 6.7) at the junction between
the neck and the cavity, one obtain the simultaneous set of equations

coskl, —isinkl, Bl [ 1 ik,
[isinklc 42 cos kly, ][32 = 4 pee” . (6.22)

Solving this system of equations, and using (6.8) to determine Bs, one finds

B, = 2peAn/AcF(Q) (6.23)
By = pel(l+An/A)e™™ = (1 = An/Ac)e™ " D%/F(Q) (6.29)
B3 = pe[(l + An/Ac)eiQ - (1 - An/Ac)ei(zan_l)Q]/F(Q)j (6-25)

where F(Q) is defined by (6.19). Note that Bs is the corﬁplex conjugate of By. The capacity is then
given by C = (Ba — B3)/2p., which leads to the expression
. (+ Ap/Ar)sinQ — (1 — Ap/A.) sin(20, — 1)

C=—i (1+ An/Ac)cosQ — (1 — An/Ac) cos(2an, — 1)Q (6.26)

where the denominator of (6.26) is F(2). The capacity of the Helmholtz resonator is seen to be
purely imaginary, as it must be for a time-harmonic solution in the absence of damping mechanisms.
Since the natural frequencies of the Helmholtz resonator are given by F(f2) = 0, one can see that
the capacity is infinite when Q = €4, as expected.

The capacity for a quarter-wavelength resonance tube is obtained from (6.26) by setting A,/A, =1,
leading to
Cqw = —itan . (6.27)

Note that the capacity of a quarter-wavelength tube is a periodic function of frequency. It is infinite
at the resonant frequencies, Q; = (25 — 1)7/2, j =,1,2,3,..., as expected. The capacity is negative
imaginary below the first resonant frequency (2 < #/2), while it is positive imaginary above the
first resonant frequency in the range 7/2 < Q2 < 7.

The capacity for a Helmholtz resonator is also negative imaginary for frequencies below the first
resonant frequency, and positive imaginary in a frequency range above the first resonant frequency.
In section 6.4.3, numerical results are presented for the capacity of Helmholtz resonators as a function
of the cavity area ratio A./A, and the non-dimensional neck length o, = I,/l. These results
demonstrate that, with proper choice of geometric parameters, the capacity of a Helmholtz resonator
exceeds that for a quarter-wavelength tube with the same resonant frequency.

6.3 Low-frequency theory for a Helmholtz resonator

In this section, a simpler low-frequency theory for the Helmholtz resonator is developed, in order to
further illuminate the physical behavior. In the low-frequency theory, one assumes that all linear
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dimensions of the Helmholtz resonator are small compared to the acoustic wavelength. In this case,
the fluid in the neck can be considered incompressible. Assuming that the frequency is high enough
that the viscous Stokes layer thickness of O((v/w)'/?) is small compared to the cross-sectional
dimensions of the neck, the fluid in the neck can be approximated by a unidirectional plug flow,

uw(z,t) = uye” L {6.28)

1t is assumed that the pressure at the entrance to the neck is specified, say p = pee~™* at z = 0.
Noting that the pressure gradient for an incompressible unidirectional flow is independent of z, the
momentum equation can be integrated to determine the pressure at the interface with the backing
cavity,

P(ln,t) = (Pe + iwpolpun)e™™". (6.29)

Next consider the backing cavity. Since the cross-sectional area of the backing cavity is assumed
large compared to that of the neck, the velocities within the backing cavity are negligible. If one
also assumes that the linear dimensions of the backing cavity are small compared to the acoustic
wavelength, the density p, and pressure p, in the backing cavity are approximately uniform. The
density perturbation is related to the volume inflow/outflow from the neck. Application of the
integral continuity equation to the backing cavity produces

—twppVe ~ poundn = 0,

where V, is the volume of the backing cavity and A,, is the cross-sectional area of the neck. Assuming
that the pressure and density perturbations in the backing cavity satisfy the isentropic equation of
state (pp = c®pp), One obtains

— ipOczAn

oV Uy, (6.30)

Dy

Finally, the pressure must be continuous at the interface between the neck and backing cavity, so
that p(l,,t) = ppe~**. Equating (6.29) and (6.30), yields obtain

Db — Pe = wpolntin. (6.31)

Equations (6.30) and (6.31) control the dynamics of the Helmholtz resonator.

6.3.1 Low-frequency theory: free response of a Helmholtz resonator

The natural frequency for the Helmholtz resonator is obtained by setting the pressure p, at the neck
entrance (z = 0) to zero. Equations (6.30) and (6.31) then provide a homogeneous set of linear

equations for u, and py,
pqczAn wV, Un ] 0. (6.32)
—twpply, 1 Db

Non-trivial solutions to (6.32) exist only when the determinant of the coefficient matrix is zero.
Setting the determinant equal to zero, the natural frequency of the Helmholtz resonator is found to
be

wy = c(An/la V)2 (6.33)

The low-frequency theory provides an approximate expression for the lowest natural frequency of
the Helmholtz resonator; therefore the natural frequency has been labeled as w;, for consistency
with the notation of section 6.2.2. We see that the resonant frequency of the Helmholtz resonator
can be decreased by increasing the length of the neck, or by increasing the volume of the backing
cavity.
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Consider a backing cavity of cross-sectional area A, and length l.. The natural frequency of the
Helmholtz resonator then takes the form

_ (a8

w = (lnlc)l/z

(6.34)

Recasting this expression in terms of the Helmholtz number Q = wl/c, where [ = l, + I, and
introducing other notation from section 6.2.2, one obtains

(An/A)Y?
O =" 6.35
! [(1 ~ an)an)t/? (6.35)
The low-frequency theory has assumed that the cross-sectional area of the neck is small compared
to that of the backing cavity (An/A; < 1). In the low-frequency limit, the Helmholtz number is
seen to be proportional to the square root of the area ratio. For an axisymmetric geometry with
neck diameter d,, and cavity diameter d., ©; depends linearly on d,/d,.

Next consider the dependence of Q; on the neck length parameter a,, = l,,/l. It is easy to show that
Q; takes on its minimum value at a,, = 1/2, corresponding to I, = I, = I/2. This feature was also
seen in the axial-wave theory. Setting o, = 1/2 in (6.35), yields the low-frequency prediction

= —;—(An/Ac)l/z for  on =1/2. (6.36)

The explicit form of (6.35) allows the influence of changes in the neck length to be examined easily.
For example, if one sets a, = 0.25 or 0.75, the resonant frequency € is increased by only 15%
relative to the value for @, = 0.5. Thus, the ‘minimum’ of Q; as a function of o, is fairly broad, so
that valies of a, # 0.5 produce only a modest increase above the minimum resonant frequency, as
long as one stays away from the end points an =0 or 1.

Comparisons of the axial-wave and low-frequency predictions for the natural frequency of a Helmholtz
resonator are presented in subsection 6.4.1.

6.3.2 Low-frequency theory: forced response of a Helmholtz resonator

To analyze the forced response of a Helmholtz resonator, one repeats the analysis of subsection 6.3.1,
assuming a non-zero value of the external pressure p,. Combining (6.30) and(6.31), the inhomoge-
neous system of linear equations is obtained

potAn WV, ] [ Un ] _ [ 0 } (6.37)
=tpowln, 1 23 Pe |
The solution to this inhomogeneous matrix equation is
Un Pe —wV,
= . 6.3
[ Pb ] (24, — w2l V) [ FA, } (6.38)

Using this result in (6.21), one obtains the low-frequency prediction for the Helmholtz resonator

capacity, v
A w

e
cAn [1 - (w/w1)?]
For a backing cavity of cross-sectional area A. and length [, (6.39) takes the form

= —3 (1 - an)Ac Q/Q]
°= [ anAn ] 1 —- (/)% (6.40)

C= (6.39)
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where 6.35 has been utilized.

Several features of the physical behavior are apparent from the low-frequency expression (6.40)
for the capacity. The low-frequency theory requires A./A, >> 1; one can see that the capacity
is O((A¢/An)'/?) in this limit. As was seen from the axial-wave theory, the capacity is negative
imaginary for @ < Q;, positive imaginary for Q > €, and infinite at @ = ;. From (6.35), it can
be seen that the resonant frequency ; is invariant to an interchange of [,, and I, (or equivalently,
to the substitution a, — 1 — a;,). However, the capacity does not have this property. Noting that
(1 — an)/an = lc/l,, it can be seen that the capacity is increased if the interchange of I, and I,
decreases the neck length, whereas the capacity is decreased if the interchange increases the neck
length.

The low-frequency expression (6.40) for the capacity allows the influence of neck length to be easily

examined. In subsection 6.3.1, it was seen that a change in the neck length parameter oy from 0.5

to 0.25 (or 0.75) increased the resonant frequency by only 15%. However, these changes in the neck

length have a major influence on the Helmholtz resonator capacity. A decrease in the neck length

parameter o, from 0.5 to 0.25 increases the capacity by a factor of 1.73, whereas an increase in a;,

from 0.5 to 0.75 decreases the capacity by this same factor. While the cases a, = 0.25 and 0.75
. have the same resonant frequency, the capacity for o, = 0.25 is three times that for a, = 0.75.

In subsection 6.4.3, the axial-wave and low-frequency predictions for the capacity of a Helmholtz
resonator are compared.

6.4 Numerical results and discussion

In this section, numerical results for the free and forced response of a Helmholtz resonator, obtained
from the axial-wave theory and the low-frequency theory are presented. The numerical results were
obtained using Mathematica [Wolfram, 1996] on a personal computer.

6.4.1 Resonance frequencies

The resonant frequencies for the Helmholtz resonator are the roots of (6.18), a transcendental equa-
tion which has an infinite number of roots. Since the investigation of Helmholtz resonators is
motivated by a desire for low resonant frequencies, the focus is on the lowest root j = 1. In Fig-
ure 6.1 (Figure 1.4 repeated for convenience), the non-dimensional resonant frequency € = wil/c
obtained from the axial-wave theory is plotted as a function of normalized neck length o, = I,/I
(including the neck end corrections), for several values of the area ratio A./A,. For a, = 0orl,
the geometry degenerates to a quarter-wavelength tube and the resonant frequency takes on the
quarter-wavelength value ; = 7/2 = 1.571. For A./A, = 1 (not shown in Figure 6.1), the geom-
etry also degenerates to a quarter-wavelength tube and the resonant frequency is ©; = /2 for all
values of a;,. Results for four different values of the area ratio, A./A, =4, 9, 16 and 25, are plotted
in Figure 6.1. The results show that, when A./A, is sufficiently large, the resonant frequency of the
Helmholtz resonator is much lower than the resonant frequency of a quarter-wavelength tube of the
same length.

For a fixed value of A./A,, the resonant frequency takes on its minimum value at o, = 1/2,
corresponding to I, = I, (where the neck length I, includes the end corrections). For the special
case an, = 1/2, the eigenvalue relationship (6.18) can be solved explicitly to obtain the expression
(6.20) for the minimum resonant frequency. The minimum resonant frequency is plotted as a function
of the inverse area ratio A,/A. in Figure 6.2. As the inverse area ratio An/A. is decreased from
one, the minimum resonant frequency drops gradually at first, and then drops rapidly as A,/A.
approaches zero.
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Figure 6.1: Non-dimensional resonant frequency §2; of a Helmholtz resonator, as a function of the
nondimensional neck length a,. A./A, = 4,9, 16, and 25 (top curve to bottom curve).

ATL /AC'

Figure 6.2: Resonant frequency §2; of a Helmholtz resonator as a function of the area ratio A,/A,,
for the case of optimum geometry (a, = 0.5).
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Figure 6.3: Resonant frequency §2; of an axisymmetric Helmholtz resonator as a function of the
diameter ratio d,/d., for the case of optimum geometry (I, = I.).

It is illuminating to re-plot the results in Figure 6.2 as a function of dy/d., for the case of an
axisymmetric geometry (An/Ac = (dn/d;)?). The result is shown in Figure 6.3. From Figure 6.3, it
can be seen that the minimum resonant frequency is a linear function of d,/d, for small values of
this parameter, corresponding to a square root function of the inverse area ratio (£ o< (An/Ac)Y/2).
Since the resonant frequency approaches zero as A, /A, — 0, it is natural to seek a connection with
the low-frequency theory of section 6.3.1. The low-frequency prediction for the minimum resonant
frequency for the case of an axisymmetric geometry, equation (6.36), is plotted as a dashed line in
Figure 6.3. One can see that the low-frequency theory corresponds to the tangent line at the origin
for the curve from the axial-wave theory. The low-frequency theory provides a remarkably accurate
expression for the minimum resonant frequency as a function of d,/d.; the low-frequency prediction
differs from that of the axial-wave theory by less than 8% for values of d,/d. < 0.5. Values of
d,/d. > 0.5 are of less practical interest, since these geometries produce only modest reductions of
the resonant frequency.

" If the only criterion were to obtain the lowest resonant frequency for a fixed resonator length,
the optimum geometry would correspond to a, = 1/2. However, the case a, = 1/2 may be
incompatible with other requirements for the geometry. In addition, values of o, different from 1/2
are advantageous when considering the Helmholtz resonator capacity. Hence, it it worthwhile to
consider the influence on the resonant frequency of deviations from the optimum value o, = 1/2.
From Figure 6.1, it can be seen that the curves of ; versus a, are relatively flat in the central
region surrounding the optimum, but rise rapidly to the quarter-wavelength value ©; = /2 near
the end points a, = 0 and 1. Thus, the resonant frequency is increased only slightly when «, is
moved away from the optimum value of a, = 1/2. For example, for the case a, = 0.24 or 0.76, the
resonant frequency increases by only about 15% relative to the optimum case (a, = 1/2). Hence,
deviations from a, = 1/2 have only a modest effect on the resonant frequency, as long as one stays
away from the end points o, = 0 and 1.

It was seen in Figure 6.3 that the low-frequency theory provides a very good prediction for €,
as a function of d,/d., for the case a, = 1/2. Given the relative simplicity of the low-frequency
expression (6.35) for €21, it is of interest to examine the accuracy of this expression for a, # 1/2.
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Figure 6.4: Comparison of the low-frequency theory and axial-wave theory predictions for the reso-
nant frequency €, as a function of a,. A./A, = 4 (top curves) and 16 (bottom curves).

In Figure 6.4, the low-frequency and axial-wave predictions for ; are plotted as a function of oy,
for two values of A./A,. Two trends can be seen in the results. First, consider the behavior as a
function of the area ratio A./A,. The predictions of the low-frequency theory are more accurate
for larger values of A./A,. This trend is expected, since the resonant frequency decreases as A./A,
is increased; it is only at low frequencies that the simplifying assumptions of the low-frequency
theory are valid. Second, consider the behavior as a function of a,. The low-frequency theory is
most accurate at @, = 1/2, and remains useful for a range of a, surrounding 1/2. However, the
theory fails completely in the vicinity of the end points @, = 0 and 1. Essentially, as a,, approaches
0 or 1, the dominant physical behavior is a quarter-wavelength resonance in the cavity or neck,
respectively. The assumptions inherent in the low-frequency theory preclude the prediction of a
quarter-wavelength resonance. Despite the failure at the end points, the low-frequency theory is
quite accurate in the central band of a, of most practical interest, especially for larger values of
Ac/An.

6.4.2 Mode shapes

Results for the pressure field mode shape corresponding to the lowest resonant frequency (j = 1), for
several values of a,, and A./A, are presented. The results presented in this section were obtained
from the axial-wave theory. In Figure 6.5, the pressure amplitude for the j = 1 mode is plotted as a
function of non-dimensional axial distance z/l. Results are presented for a, = 0.24, 0.5 and 0.76 in
parts (a), (b) and (c), respectively. In each plot, results for five values of the area ratio are presented,
AcfA, = 1,4, 9, 16 and 25. Note that the case A./A, = 1 corresponds to a quarter-wavelength
tube.

First consider the mode shapes for a, = 0.24 in Figure 6.5(a). For values of A./A,, # 1, the slope of
the pressure field is discontinuous at z/l = 0.24, the location of the junction between the neck and
the cavity. This discontinuity in slope arises from the volume flux matching condition between the
neck and cavity, and is an artifact of the approximations that have been introduced in the theory.
In a more refined analysis, the discontinuity in slope would be smoothed out by a local solution
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Figure 6.5: Pressure mode shapes for free resonance of a Helmholtz resonator, plotted as a function
of z/l. Ac/An =1, 4,9, 16 and 25 (bottom curve to top curve for =/l > an).
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in the vicinity of the junction. However, this local solution is not required in order to determine
global properties of the acoustic field such as the resonant frequency and global mode shape. As
the area ratio A;/A, is increased, the resonant frequency decreases (see Figure 6.1) and the mode
shape tends to its low-frequency limit, which corresponds to a linear profile of slope 1/, in the
region 0 < z/l < ay, connected to a constant amplitude profile p = 1 in the region an, < z/l < 1.
Note that the slope of the profile in the neck region increases with A./A,. In the low-frequency
limit, the slope of the pressure field at the resonator mouth (z/l = 0) is approximately twice that
for the quarter-wavelength response. The increased slope at z/l = 0 relative to that for the quarter-
wavelength response indicates that the capacity of the Helmholtz resonator increases with A./As.
The Helmholtz resonator capacity will be examined in the following subsection.

Next consider the mode shapes for o, = 0.5 and 0.76, presented in Figures 6.5(b) and (c). The
general behaviors discussed in the previous paragraph for the case a, = 0.24 also apply here. For
Ac/A, # 1, the mode shapes have a discontinuous slope at z/l = ay, the location of the junction
between the neck and cavity. The mode shapes tend to the low-frequency limit as A./A, increases.
Compared to the case o, = 0.24, the slope of the pressure field in the neck in the low-frequency
limit is smaller by a factor of two for the case a, = 0.5, and smaller by a factor of three for the
case ap = 0.76. For o, = 0.76, it is interesting to note that the slope 9p/dz at the resonator
mouth {z/! = 0) in the low-frequency limit is slightly smaller than that for the quarter-wavelength
response. In contrast, for a, = 0.5 and 0.24, the slope at the resonator mouth in the low-frequency
limit is significantly larger than that for the quarter-wavelength response.

The approach of the mode shape to the low-frequency limit {with increasing A./A,) occurs more
rapidly for the case a, = 0.5 than for a,, = 0.24. The approach of the mode shape to the low-
frequency limit is even more rapid for the case @, = 0.76. The rate at which the mode shape
approaches the low-frequency limit appears to be related to the degree of similarity between the mode
shapes for the quarter-wavelength response (A./A, = 1) and the low-frequency limit (A./A, > 1).
The quarter-wavelength and low-frequency mode shapes are most similar for the case a, = 0.76,
and least similar for a, = 0.24.

6.4.3 Capacities

The capacity is a normalized measure of the volume flux that the resonator stores, for a given external
pressure fluctuation p.e—*“t. The capacity C is defined by (6.21). The capacity is a function of the
frequency w of the external forcing, and becomes unbounded at the resonant frequency w = w;
(in the absence of damping mechanisms). The capacity is purely imaginary for the inviscid linear
theory that was developed, indicating that the velocity at the mouth of the resonator is out of phase
with the external pressure field. The capacity is negative imaginary for w < wy, indicating that the
velocity field leads the pressure field by 90°, while the capacity is positive imaginary for w > wy,
indicating that the velocity field lags the pressure field by 90°.

Results for the Helmholtz resonator capacity, calculated from the axial-wave theory expression (6.26),
are presented in Figure 6.6. The magnitude of the capacity is plotted as a function of the non-
dimensional frequency ratio §2/Q4, for the cases a,, = 0.24, 0.5 and 0.76 in Figures 6.6(a), (b) and
(c), respectively. In each plot, results for three area ratios are presented, A./A, =1, 4 and 16. The
lowest curve in each plot is the result for A./A, = 1, corresponding to a quarter-wavelength tube.
Note that the magnitude of the capacity for a quarter-wavelength tube is symmetric about = ;,
for the frequency range plotted in Figure 6.6. This symmetry is not present for the Helmholtz
resonator geometries, where the capacity for frequencies @ > €; is larger than the capacity for
< .

The results in Figure 6.6 show that the neck length has a strong influence on the Helmholtz resonator
capacity. For the case a, = 0.24, the capacities for A./A, = 4 and 16 exceed that for a quarter-
wavelength tube by factors of approximately 3 and 6, respectively. For a, = 0.5, the capacities
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Figure 6.6: The capacity C for forced response of a Helmholtz resonator at frequency Q, plotted as
a function of the frequency ratio /2. A./A, =1, 4 and 16 (bottom curve to top curve).




for A./A, = 4 and 16 exceed that for a quarter-wavelength tube by factors of nearly 2 and 4,
respectively. For a, = 0.76, the capacity for A./A, = 4 is only slightly higher than that for
the quarter-wavelength tube, while the capacity for A./A4, = 16 is approximately twice that for
the quarter-wavelength tube. Comparing the capacities for the same area ratio but different neck
lengths, one finds that the capacity for a,, = 0.24 is approximately three times that for o, = 0.76.

Although the mode shapes in Figure 6.5 are not directly applicable for the case of forced response,
they are indicative of the pressure fields for frequencies in the vicinity of & = ;, which are of the
most interest for the Helmholtz PRT. Hence the mode shapes can be used to provide some guidance
in understanding the influence of neck length on the resonator capacity. Note from (6.21) that the
capacity is proportional to u (or (8p/8z)/w), evaluated at z = 0. The Helmholtz geometries increase
capacity by increasing 8p/8z|;=0 and by decreasing w. The difference in capacity between the cases
oy, = 0.24 and 0.76 is due solely to the difference in 9p/8z};—¢, since the resonant frequency €
is the same for these two cases. From the mode shapes presented in Figure 6.5, it was seen that
8p/0z|y=0 is larger for the shorter neck length. Physically, there are two effects that cause the
capacity for a, = 0.24 to be much larger than that for o, = 0.76. First, due to the shorter neck,
there is a smaller amount of fluid mass in the neck, so that the fluid in the neck is more easily

- accelerated. Second, due to the longer cavity, more fluid can be absorbed into the cavity for a given

pressure rise. Both these effects contribute to the increase in resonator capacity with a decrease in
0.

The simplifications introduced in the low-frequency theory lead to an expression (6.40) for the
capacity that is much simpler than the result (6.26) from the axial-wave theory. In Figure 6.7,
predictions for the capacity based on the simpler low-frequency theory are compared to those from
the axial-wave theory. The low-frequency prediction is plotted as a dashed line, while the axial-wave
result is plotted as a solid line. The conditions are the same as those in Figure 6.6, except that
results for A;/A, = 1 are not presented since the low-frequency theory is not applicable to the
quarter-wavelength tube geometry. The results presented in Figure 6.7 demonstrate that the low-
frequency theory is more accurate at higher values of A./A,. The reasons for this were discussed
in connection with Figure 6.4. For fixed A./A;, the accuracy of the low-frequency theory is highest
for @, = 0.5, and decreases somewhat for o, = 0.24 and 0.76. However, the general accuracy of the
low-frequency theory is impressive, considering the simplicity of the expressions.

6.4.4 Comparison to numerical simulation

Finally, the current analytical predictions for the resonant frequencies are compared to a result
obtained in a companion numerical simulation [Cain et al., 2004} of a Helmholtz resonator based
PRT. An axisymmetric geometry is considered, with a neck-to-cavity diameter ratio d,/d. = 0.5, a
neck-to-cavity length ratio I, /lc = 0.25, and a neck length-to-diameter ratio In,,,,,/dn = 0.64.
The ratios quoted in the previous sentence are based on the geometric length of the neck. Since the
neck length is relatively short, the end correction (6.10) applies.

In Figure 6.8 (repeated from Figure 1.5 for convenience), the resonant frequency obtained in the
simulations is compared to analytical predictions of varying degrees of sophistication. Dimensional
values of the resonant frequency are plotted as a function of total (geometric) length of the actuator,
lgeom = lngeom +1c- The low-frequency theory in the absence of neck end corrections leads to the
highest prediction for the resonant frequency. This prediction lies substantially above the simulation
point. The geometry considered in the simulations has a very short neck, so that the end corrections
substantially increase the effective mass in the neck, lowering the resonant frequency. The low-
frequency theory with neck end corrections lies just slightly above the simulation point. Finally, for
the parameter values in this case, the more refined axial-wave theory provides a prediction that is
slightly lower than the corresponding result from the low-frequency theory. The prediction of the
axial wave theory with neck end corrections is in very good agreement with the result obtained from
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the numerical simulation. Additional comparisons of theoretical results with numerical simulations
and also with experiments are presented in [Cain et al., 2004].

6.5 Conclusions Regarding a Helmholtz Based PRT

In summary, analytical models for Helmholtz resonator behavior have been developed which provide
guidance for the design of Helmholtz resonator based PRT actuators. The primary benefits of the
Helmholtz geometry, relative to a quarter-wavelength resonance tube, are a reduction in the resonator
length for a specified resonant frequency, and an increase in the capacity of the resonator. These
features provide additional flexibility in the design of PRT actuators for low-frequency applications,
particularly in the presence of geometric length constraints.

The analytical models provide predictions for the resonant frequency, acoustic mode shape and
capacity of the Helmholtz resonator, as a function of resonator geometry. Two analytical models
have been developed, the axial-wave theory and the low-frequency theory. The axial wave theory
accounts for acoustic propagation effects along the axis of the resonator, and is capable of describing
the transition from quarter-wavelength tube to Helmholtz resonator behavior as the geometry is
varied. The low-frequency theory requires A./A, >> 1, which is generally satisfied for Helmholtz
resonator geometries, but precludes consideration of geometries that differ only slightly from a
constant-area resonance tube.

The low-frequency theory leads to relatively simple expressions whose accuracy has been demon-
strated by comparisons with results from the axial-wave theory. For an axisymmetric geometry,
in the low-frequency limit the resonant frequency is proportional to (Ac/An)l/ 2 and the capacity
is proportional to (l.A./lnA,) /2, where I,, A, and I, A, are the length and cross-sectional area
of the neck and backing cavity, respectively. The simplicity of the low-frequency expressions make
these very attractive for applications such as preliminary design.

For a Helmholtz resonator based Powered Resonance Tube actuator, a low resonant frequency and
high capacity are generally desirable. The lowest value of the resonant frequency for a fixed resonator
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length | = I, + 1, is obtained by setting l,, = [.. However, since the resonant frequency is a relatively
flat function of a,, = I, /(l, +1.) in the vicinity of the minimum at &, = 0.5, the resonant frequency
remains quite low over a range of aj,, say 0.25 < o, < 0.75. The capacity is proportional to
(1c/12)/2. In order to increase the capacity while retaining a low resonant frequency, a neck length
shorter than the cavity length should be chosen. As an illustration, relative to the case «, = 0.5,
reducing the neck length to o, = 0.25 raises the resonant frequency by only 15%, but increases the
capacity by 73%.
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Chapter 7

Miniaturized PRT

7.1 Overview

In addition to the development of a high-bandwidth PRT actuator, and a Helmholtz PRT actuator
for low frequencies, as discussed in Chapters 1 and 2, a prototype miniaturized high-bandwidth
PRT actuator was also constructed. It consists of three cylindrical actuators of identical outside
dimensions. Each had a variable depth by way of a movable piston and a constant area nozzle jet of
the same diameter as the resonator openings. This chapter will summarize the results of tests with
the miniaturized actuators.

7.2 Setup

Three cylindrical actuators of identical outside dimensions were constructed. Each had a variable
depth by way of a movable piston and a constant area nozzle jet of the same diameter as the resonator
openings. The resonators were a 1/8" straight tube, a 1/16" straight tube, and a 1/16” x 1/8”
Helmholtz resonator. The 1/16" straight tube and Helmholtz resonators are detailed in Figure 1.6
(repeated from Figure 1.6 for convenience).

The resonators were in turn mounted in a traversing assembly which moved the piston and resonator
relative to the jet which was fixed. An identical initial test matrix was run for each actuator. The
supply pressure was varied from 25 to 60psig in increments of 5psi; The spacing was varied from 0
to 0.25" in increments of 0.01"; the depth was varied from 0.2" to 1" in increments of 0.05". For
all points a Breiul & Kjiar microphone was mounted in foam 0.5" downstream and 0.75" above
the center of the resonator mouth. At all points the signal from the microphone was run through
an FFT program. The frequency in Hz and SPL in dB for the highest peak in the spectrum was
extracted and recorded in a table. Since the narrower jet was more sensitive to changes in spacing
than the wider tube, a more detailed data set was needed for the actuators using the smaller jet.
For the actuators using the 1/16" jet (the 1/16" straight tube and Helmholtz actuators) a jet-tube
spacing range was extracted from the first test matrix that yielded resonance for each pressure. A
second test matrix was then run for these actuators using the same pressure and depth ranges and
increments and the spacing ranges extracted from the first data set with an increment of 0.0025".

Non-resonating cases were then deleted from the data sets. A control program was written which
used the data from the test matrix to find a starting position of the actuator based on a target
frequency and either the supply pressure or minimum required SPL. The program would output
the minimum supply pressure if a minimum SPL was given. Then the spacing and depth were set
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Figure 7.1: The miniaturized quarter wavelength and Helmholtz PRT actuators and a close-up detail
of the Helmholtz resonator. (repeat of Figure 1.6).

to the position giving the maximum SPL at that pressure and frequency from the data table. The
spacing was varied iteratively to maximize the SPL, then the depth was varied iteratively to tune
the frequency to within 5Hz, which was the frequency resolution of the FFT program.

Frequency spectra and time series data were taken for a few frequencies and pressures for the 1/16"
straight tube and Helmholtz actuators. Comparison plots for a few of them are shown below in
Figures 7.2 through 7.5.

The data from the Helmholtz resonator was further processed to extract only resonating cases
operation on the base mode, i.e. the peak SPL is on the first harmonic. The spacing that gave the
highest SPL without mode jumps at 35 psig supply pressure was found. The frequency versus depth
data was extracted for that spacing and pressure. It was plotted against curves generated by the
Graphical User Interface (GUI) described in Chapter 8. The GUI was programmed using the theory
developed by Kerschen. The plot is shown in Figure 7.6. A scatter plot of all points taken was also
plotted against the theoretical data to show the range of frequencies possible at the different depths.
This plot is shown in Figure 7.7.

Both theories with end corrections fell within the range of the measured data. The dependence of
frequency on spacing for a fixed depth and pressure is shown in the tables below (Table 7.1 and
Table 7.2). The relation was found to be periodic. This would be consistent with a dependence
on pressure and temperature at the resonator mouth. The period and amplitude of the variation
depended on pressure. The relation however was too inconsistent to create a reliable model from.




160
140 -

|
‘
130 |

70 4

60 T \
1000 10000 100000

F (Hz)

Figure 7.2: Spectra for the 1/16” straight tube and Helmholtz resonator with the apparatus set at
4kHz.

1/16 straight tube sat at 4 kHz

AVAN VAPV NANE AN
A W A W A et W A

Microphone Signal
V)
-1

0 0.0001 0.0002 0.0003T¥ne {8) 0.0004 OAOBOS 0.0006 0.0607[
= ,4..,... — —_—— T T T T
- Helmholtz Resonator set at 4 iHz *
g
2 o AN A ™ FaN
N ANLYA P A WA WP A V.V AW
N RV AN SRR
§ \/ \ \
= ') %
4 T ¥ ¥ v 4 v !
o 0.0001 0.0002 0.000TIme (s) 0.0004 0.0005 0.0006 0.0007
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Table 7.1: A table of Frequency vs. spacing and pressure for a depth of 1/2” in the Helmholtz
resonator.
S(in.) 0.5 in. Depth Helmholtz
| P(PSl)— | 25 PSI 30 PS} 35 PSI 40PSI | 45 PSI 50 PSI 55 PSI 60 PSI
‘ ’ 0 ek *kd Hriedr *ekk L2 22 Hededk Aried ke

0.01 5530 6150 5815 5825 6115 6465 6455 6495
002| 4185 3915 4045 3900 4055 4005 3905 4320
0.03| 4435 4130 4145 13915 4550 13470 5415 14120
0.04 | 4410 13465 14010 11820 13280 11955 13320 13545

0.05]| 3905 i 13955 13270 14010 11705 11630 12530 |
006] 3765 3760 o i 11810 14010 11526 12200
007 ] 4040 3505 3580 il il 11950 13010 11600

0081 4220 3320 3300 3400 4330 11925 11905 12415

0.09] 4420 4195 2040 3110 3260 4100 3990 11360
0.1) 4435 4425 4095 2645 2930 3215 4180 3975

0.11 3975 11725 4475 3915 2495 8545 6315 4185

0.12] 3905 i 11760 12280 3700 7820 11900 8620
013| 4135 3875 o 11485 3765 2625 8485 7610
0.14| 4285 3730 kel 11995 12105 7955 8520 11655 |
0.15| 4220 4010 3700 el il 3755 8550 5735 |
0.16 | 4020 4260 3480 sl ol 4055 2920 5750 |
0.17 | 4035 11800 3810 3500 bl 4070 11930 2925 |

0.18 | 4410 11445 4260 3215 3540 3815 3465 11945 |

0.19] 11350 11885 4130 3980 3255 3490 3575 11945 |
0.2] 11455 11745 4740 4190 2905 3235 3380 11800

021} 11635 13015 e 11360 3850 8755 3155 8725

0.22] 11755 9390 3840 il ol 2600 8685 8465
0.23 s 10495 3670 kel il 3715 8220 8375
0241 7350 11980 3550 4150 ol 3870 2890 2830

025] 4295 11490 11275 3720 4050 4170 3680 2870




Table 7.2: A table of Frequency vs. spacing and pressure for a depth of 1/2” in the 1/16” straight
tube resonator.

S(in.)} 0.5in. Depth Straight Tube
P(PSl)— | 25PSI | 30PSI | 35PSI | 40PSI | 45PSI | 50PSI | 55PSI | 60PSI |

o wkk Nhd ok *ink ok ek ik kR

0.01 when 22 (2123 Ak kR whx L2 L d ]

002 5975 6140 6445 6710 5785 6205 6285 5915
003] 6315 6630 6305 6270 6405 6670 6370 7170
004] 6430 6305 12855 13945 13780 13535 13800 13800 |
005] 6380 13485 13965 13565 13870 13260 12480 13135 |

0.06 il i 13670 13865 12425 12395 13595 12775 |
0.07} 5795 bl el 8455 11790 13165 12405 11780
0.08] 6220 5405 5435 bl 13005 9610 12175 12895

0.09| 6380 6235 5145 5250 8285 6725 11735 9170
0.1 6570 6520 5130 4880 6575 9445 8930 11540 |

0.11 6450 7115 6275 4495 4655 6345 6280 11525

0.12] 6065 12040 12415 5930 4380 4570 6095 6200 |

0.13 | 6080 6330 12170 12135 5760 4500 6315 il

0.14| 6305 5915 12030 11980 6885 4470 4705 4900
0.15| 6710 5750 bl 11970 11980 4630 4895 4775
0.16 | 6395 6200 il 12600 12040 6450 5000 4845

017 | 6295 6345 5510 5820 6395 6310 5045 5020
0.18| 6275 11540 6020 5445 6330 6480 5510 5005
0.19| 6260 6960 6770 5305 5435 6005 5830 4955
0.2] 6740 7800 6690 6395 5130 5420 5570 5065
0.21 6965 5980 11770 6470 5065 5065 5295 5170
022]| 6835 6345 11600 11835 5830 4835 5060 5115 ¢
023| 6970 7150 6560 11680 11540 5565 4980 5040 |
024 9615 11820 5760 11445 11495 5895 4990 5015
0.25]| 6085 7120 6085 i 10710 6740 5690 5045




Chapter 8

Helmholtz PRT Design Tool

8.1 Overview

The powered resonance tube (PRT) is one type of active flow control (AFC) device that shows
promise in producing performance improvements for various aerospace applications. Recently, Ker-
schen [Kerschen and Cain, 2003] proposed the use of a Helmholtz resonator in place of the quarter-
wavelength resonance tube normally found in PRTs.

The PRT Design Tool uses Kerschen’s Helmholtz resonator results based on low-frequency theory
[Kerschen et al., 2004), in order to calculate:

1. Resonant frequency for a given input geometry

2. Geometry characteristics that result in a given input frequency

The program requires entry of a few basic inputs and maintains a set of default system variables—
which can be modified—in order to perform its calculations. The inputs and calculations are discussed
in detail below.

8.2 Screen Layout

The PRT Tool screen consists of a graphical depiction of the basic geometry of a Helmholtz resonator
PRT actuator, three tabs for entry and calculation of geometry and frequency data, and an “Exit”
button in the lower right corner, which closes the PRT Tool window and exits the program. Clicking
anywhere on the figure displays a window that describes the geometry and frequency variables.

Three different tabs provide calculation of resonant frequency from geometric inputs, calculation of
geometry based on frequency input, and entry of system variables, respectively. Click on the title
of each tab (e.g., “Solve for geometry™), just below the figure, to access that tab’s functions. Figure
8.1 shows the screen when calculating the resonant frequency based on the input geometry.

8.3 Frequency Calculation

The first tab calculates resonant frequency based on input neck length, cavity depth, and the ratio
of the neck radius to the cavity radius. The user fills in any blank boxes, or change any values
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they desire, and clicks the “Solve for F” button. The calculated frequency will appear in the Ref.
Frequency box at the right side of the tab.

For the frequency calculation, it is recommended that the geometric neck length be less than three
times the neck radius. If it is not, the program will display a message suggesting that the user
correct either of these input values before the calculation is made.

Next, an effective neck length is calculated to account for three-dimensional flow effects in this
model’s axisymmetric geometry. If the ratio of the neck radius to the cavity radius is less than 2/3,
and the cavity depth is greater than 1.5 times the neck radius, a correction is added at both ends of
the neck. Otherwise, the correction is added only at one end. For details, see Algorithm 1.

Algorithm 1 Effective neck length calculation
IF ( rp/7c < 2/3) AND (I, > 1.5r,) THEN

Iness = ln +0.41dy +0.41d, = I + 1.64r,
ELSE

bn;; = ln +0.41d, = I, + 0.82r,
END IF

The low-frequency approximation is then calculated using equation 6.34. In order to obtain a more
accurate solution for the resonant frequency, a Newton-Raphson iteration scheme is utilized to find
the roots to equations 6.18 and 6.19 using the low frequency calculation as an initial guess and
marching from o, = l,/l = 0.5 toward a solution at the a, corresponding to out input geometry.
Equation 6.20 gives the solution to equations 6.18 and 6.19 for a,, = 0.5. The details of the
implementation are given below in Algorithm 2. '

Algorithm 2 Algorithm to find the resonant frequency of a Helmholtz PRT actuator
1. Calculate €2 for o, = 0.5.

2. Step from a, = 0.5 to the next o, using 10 intervals between o, = 0.5 and the a,, for the
current geometry (i.e. Ao =0.1+* (ap —0.5)).

3. Use Newton-Raphson iteration to solve for a new {2 in equations 6.18 and 6.19.

4. Use a, = 0.5, a, for the desired geometry, Qfrom step 1, and © from step 3 to compute a
linear approximation of the final Q for our value ay,.

5. Step to the next ay,.
6. Use Newton-Raphson iteration to solve for the new (2.

7. Use the results from steps 1, 3, 5, and 6 (three data points) to compute a quadratic approxi-
" mation of the final  for the desired ay,.

8. Using the final value of a;, and the guess for 2 from step 7, use Newton-Raphson iteration to
solve for the final value of Q.

9. Compute the resonant frequency: w = Q¢/l

The Newton-Raphson algorithm for marching from a known root of equation 6.18 to other, nearby
roots is given in Algorithm 3.
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Slot Width Ratio = 2

NPR =3

Speed of Sound = 1116.4 ft/sec

N )

Figure 8.2: Summary window of the Helmholtz PRT actuator design code

Algorithm 3 Newton-Raphson Algorithm
Given an initial guess, €, and the functions:

— An An.
F(Q) = [1 + Ac] cos () — [1 - A_c] cos(2a, — 1)Q
! ‘Aﬂ . An .
F () = |14+==|sinQ-|1-="|(2a, - 1)sin(2a, — 1)Q
Ac Ac
the iteration scheme is:
Qg =, — L)
n+1 n F'(Qn)

and the iteration proceeds until Q41 — Q, < 1.0 x 1078

One may click the “View/Print Summary” button to view a window (see Figure 8.2) containing a
summary of all input, output, and system variables, which can be printed with the Print button in
that window. Click the Close button to close the Summary window.
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Figure 8.3: Design tool appearance when computing Helmholtz PRT actuator geometry based on a
desired frequency

8.4 Geometry Calculation

The second tab calculates a basic geometry from an input resonant frequency. Simply enter a
frequency on the left side of the tab, and click the “Solve for geometry” button (see Figure 8.3).
Results will appear on the right side of the tab.

The geometry calculation assumes a slot with a flange at both ends, thereby requiring the previously
discussed “double correction” to the neck length. Using Kerschen’s results for axial wave theory, the
geometry is computed using Algorithm 4. The final results are reduced to the next lowest multiple
of 1/32” for practical design use.




Algorithm 4 Computation of Helmholtz PRT actuator geometry given the desired frequency

Given the desired frequency, w, assuming that the chamber radius is twice the neck radius (v, = 2r;,),
one can determine the desired value of Q:

2
Q = cos! -l—:-ir—"—/—rc-)—z— = cos™! (9_&) = 0.9273 radians
1+ (rn/re) 1.25

From the definition of 2 and assuming that the effective neck length will be half the total effective
length (I = 2l,,), one obtains
cQ

b=

2w
From the definition of the end corrections, the geometric neck length is computed as

l =, — 1.64r,

Ngeom

The geometry is thus entirely determined, as the chamber length, I, is set to l,,, and the integration
slot width, s, is 2r,.
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Appendix A

Helmholtz PRT Actuator Design
Code Source

The core Visual Basic routines of the Helmholtz PRT actuator design code are listed here.

Imports System.Math

Imports System.IO

Imports System.Drawing.Printing
Public Class frmMain

Inherits System.Windows.Forms.Form

Dim Pi As Double

Dim NeckRadius As Double
Dim NeckCavityRatio As Double
Dim NeckLength As Double
Dim NeckLengthEff As Double
Dim CavLength As Double
Dim DDepthTotEff As Double
Dim SoundSpeed As Double
Dim FreqRef As Double

Dim FreqRefG As Double

Dim AlphaNeck As Double
Dim DCav As Double

Dim NeckFactor As Double
Dim SlotLength As Double

Dim DDepthEff As Double

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
btnExit.Click

End
End Sud

Private Sub frmMain_Load(ByVal sender As System.0bject, ByVal e As System.EventArgs) Handles _

MyBase.Load

Pi = 3.1415927

NeckCavityRatio = 0.666666666

SoundSpeed = 1116.4

NeckFactor = 0.82

NeckRadjus = 1

DCav = 0.0

NecklLength = 0.0

FreqRefG = 0.0

tbxfNeckCavityRatio.Text = NeckCavityRatio

tbxSoundSpeed.Text = SoundSpeed




tbxNeckRadius.Text = NeckRadius
tbxFFreq.Text = "Enter data..."

End Sub

Private Sub frmMain_SizeChanged(ByVal sender As Object, ByVal e As System.EventArgs) Handles _
MyBase.SizeChanged
pbxGeom.SetBounds(10, 10, Me.Size.Width - 30, Me.Size.Height - 230)
btnExit.SetBounds(Me.Size.Width - 90, Me.Size.Height - 65, btnExit.Width, btnExit.Height)
btnPrintIliustration.SetBounds(Me.Size.Width - 200, Me.Size.Height - 65, _
btnPrintIllustration.Width, _
btrPrintIllustration.Height)
tbxStatus.SetBounds(32, Me.Size.Height - 65, Me.Size.Width - 64 - binExit.Width - _
btnPrintIllustration.Width, tbxStatus.Height)
tabVariables.SetBounds(8, pbxGeom.Location.Y + pbxGeom.Height + 5, Me.Size.Width - 30, _
tabVariables.Height)

End Sub

Private Sub pbxGeom_Click(ByVal sender As System.0bject, ByVal e As System.EventArgs) Handles _
pbxGeom.Click
Dim frmVarDefs As New PRTVariables
frmVarDefs.ShowDialog()

End Sub

Private Sub pbxGeom_MouseHover(ByVal sender As Object, ByVal e As System.EventArgs) Handles _
pbxGeom.MouseHover
tbxStatus.Text = "Click figure for variable definitions."

End Sub

Private Sub btnFSolve_Click(ByVal sender As System.0bject, ByVal e As System.EventArgs) _
Handles btnFSolve.Click
UpdateFrequency()

End Sub

Private Sub tbxfLNeck_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles tbxfLNeck.TextChanged
If Not IsNumeric(tbxfLNeck.Text) Then
If tbxfLNeck.Text <> "." Then
tbxfLNeck.Text = "*
End If
Else
NeckLength = tbxfLNeck.Text
End If
tbxNeckRadius.Text = NeckRadius
End Sub
Private Sub tbxfDCav_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles tbxfDCav.TextChanged
If Not IsNumeric(tbxfDCav.Text) Then
It tbxfDCav.Text <> "." Then
tbxfDCav.Text = ""
End If
Else
DCav = tbxtDCav.Text
End If

End Sub

Private Sub tbxfNeckCavityRatio_TextChanged(ByVal sender As System.(Object, ByVal e As _
System.EventArgs) Handles _
’ tbxfNeckCavityRatio.TextChanged
If Not IsNumeric(tbxfNeckCavityRatio.Text) Then
If tbxfNeckCavityRatio.Text <> "." Then
tbxfNeckCavityRatio.Text = ""
End If

Else
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NeckCavityRatio = tbxfNeckCavityRatio.Text
End If

End Sub

Private Sub UpdateFrequency()
Dim Omega, (mega2, Omega3, OmegaFinal, AlphaNeck2, AlphaNeck3, A, B, C As Double
Dim iErr As Boolean
NeckLength = tbxfLNeck.Text
DCav = tbxfDCav.Text
NeckCavityRatio = tbxfNeckCavityRatio.Text
If NeckLength < (3 * NeckRadius) Then
MsgBox("It is recommended that the neck length be at least 3 times the neck radius.")

End If

If (DCav > 0.0) And (NeckLength > 0.0) Then
If NeckCavityRatio <= 0.6666666 And DCav >= (1.5 * NeckRadius) Then
NeckLengthEff = NeckLength + (2.0 * NeckFactor * NeckRadius)
Else
NeckLengthEff = NeckLength + (NeckFactor * NeckRadius)
End If
FreqRef = 12.0 * SoundSpeed * NeckCavityRatio / Sqrt(DCav * NeckLengthEff) / 2.0 / Pi
bl

Find final frequency using combination Newton-Raphson iteration and linear/quadratic
approximations

1. Calculate Omega when AlphaN = 0.5

2. Step to next AlphaN (use 10 intervals between 0.5 and our value)
. Tterate to find new Omega
. Use these two points to make linear approximation of new (mega at next AlphaN
. Step to next AlphaN
. Use guess from #4 and iterate to find new (mega
. Use these three points to calculate quadratic approximation of next Omega at

tinal AlphaN
8. Step to final AlphaN
9. Use guess from #7 and iterate to find final Omega
10. Calculate frequency from Omega

DDepthTotEff = NeckLengthEff + DCav
Omega = Acos((1.0 - NeckCavityRatio ~ 2) / (1.0 + NeckCavityRatio =~ 2))
AlphaNeck = NeckLengthEff / DDepthTotEff
AlphaNeck2 = 0.5 + (0.1 * (AlphaNeck - 0.5))
iErr = False
Omega2 = Omega
OmegaSolve(NeckCavityRatio =~ 2, AlphaNeck2, Omega2, iErr)
If iExrr Then
MsgBox("Unable to compute Omega.", MsgBoxStyle.OKCancel)
Exit Sub

End If
AlphaNeck3 = AlphaNeck2 + (0.1 * (AlphaNeck - 0.5))
Omega3 = Omega + (AlphaNeck3 - 0.5) * (Omega2 - Omega) / (AlphaNeck2 - 0.5)

~N OO W

3
3
3
3
H)
H)
3
bl
3
3
)
3
3
b

iErr = False
OmegaSolve(NeckCavityRatio = 2, AlphaNeck3, Omega3, iErr)
If iErr Then
MsgBox("Unable to compute Omega.", MsgBoxStyle.0KCancel)
Exit Sub .
End If
A = (Omega3 - Omega2) / ((AlphaNeck3 - AlphaNeck2) * (AlphaNeck3 - 0.5)) - _

((Omega - Omega2) / ((0.5 - AlphaNeck2) * (AlphaNeck3 - 0.5)))
B = (Omega - Omega2 + (A * (AlphaNeck2 =~ 2 - 0.5 = 2})) / (0.5 - AlphaNeck2)
C = Omega - (A * 0.5 = 2) - (B * 0.5)
OmegaFinal = (A * AlphaNeck - 2) + (B * AlphaNeck) + C
iErr = False
OmegaSoclve(NeckCavityRatio ~ 2, AlphaNeck, OmegaFiral, iErr)
If iErr Then
MsgBox("Unable to compute Omega.", MsgBoxStyle.0KCancel)
Exit Sub

End If




FreqRef = 12.0 * SoundSpeed * OmegaFinal / DDepthTotEff / 2.0 / Pi
tbxFFreq.Text = Math.Round(FreqRef, 4)

Else
tbxFFreq.Text = "Enter data...”

End If

End Sub

Private Sub tbxNeckRadius_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _
tbxNeckRadius.TextChanged

If Not IsNumeric(tbxNeckRadius.Text) Then
If tbxNeckRadius.Text <> "." Then
tbxNeckRadius.Text = "*
End If
Else
NeckRadins = tbxNeckRadius.Text
End If

End Sub

Private Sub bitnGSolve_Click(ByVal sender As System.bject, ByVal e As System.EventArgs) _
Handles btrGSolve.Click
Dim i, loopCount As Inti6
Dim j As Inti6
Dim NeckRadiusFinal, N1, N2, Nnew, deltaNeck, Fi, F2, Fg, Fgnew, Fp As Double
Dim OmegaG, BigOmega As Double
Dim convg As Boolean
If FreqRefG = 0.0 Then
MsgBox("Please enter a desired frequency that is different from the frequency" & _
“calculated earlier.")
Exit Sub

End If

? Assume r(n) / r(c) = 0.5, therefore A(n)/A(c) = (r(n)/x(e))~2 = 0.25

OmegaG = 2.0 * Pi * FreqRefG
BigOmega = Acos(0.75 / 1.25)
NeckLengthEff = 12.0 * SoundSpeed * BigOmega / (2.0 * OmegaG)
NeckLength = NeckLengthEff - (2.0 * NeckFactor * NeckRadius)

DCav = NeckLengthEff

i=0
| Do While i <= Int(NeckLength)
‘ i=i+1
Loop
i=i-1
j=0
Do While NeckLength >= (i + (j / 32.0))
i=i+1
Loop
i=j3-1

NeckLength = i + (j / 32.0)

i=0

Do While i <= Int(DCav)
i=1i+1

Loop

i=ji-1t

j=0

Do While DCav >= (i + (j / 32.0))
j=j+1

Loop

j=3-1

DCav = i + (j / 32.0)




tbxGNeckLength.Text = NeckLength
tbxGNeckRadius.Text = NeckRadius
tbxGSlotLength.Text = 2.0 * tbxGNeckRadius.Text
tbxGDCav.Text = DCav

End Sudb

Private Sub btnFSummary_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) .
Handles btnFSummary.Click
Dim frmSurmary As New Summary
Dim sText As String
sText = "PRT Design Tool" & vbCrLf & "Frequency Calculation" & vbCrLf & vbCrLf
sText = sText & "Inputs:" & vbCrL{

sText = sText & "Neck Length = " & NeckLength & " in." & vbCrLf

sText = sText & "Cavity Depth = " & DCav & ™ in." & vbCrLf

sText = sText & "Neck/Cavity Ratio = " & NeckCavityRatio & vbCrLf & vbCrLf

sText = sText & "Calculated Frequency = " & tbxFFreq.Text & " Hz" & vbCrLf &k vbCrLf
sText = sText & "System Variables:" & vbCrLf

sText = sText & "Neck Radius = " & Math.Round(NeckRadius, 4) & " in." & vbCrLf
sText = sText & "Speed of Sound = " & SoundSpeed & " ft/sec”

£rmS ry.thxS ry.Text = sText

frmSummary.ShowDialog()

End Sudb

Private Sub btnGSummary Click(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles btnGSummary.Click
Dim frmSummary As New Summary
Dim sText As String
sText = "PRT Design Tool” & vbCrLf & "Geometry Calculation” & vbCrLf & vbCrLf
sText = sText & “Inputs:” & vbCrLf
sText = sText & "Reference Frequency = " & FreqRefG & " Hz" & vbCrLf & vbCrLf

sText = sText & "Calculated Cavity Depth = " & tbxGDCav.Text & " in." & vbCrLf
sText = sText & "Calculated Actual Neck Length = " & tbxGNeckLength.Text & " in.” & vbCrLf
sText =

sText = sText & "Calculated Slot Width = " & tbxGSlotLength.Text & " in." & vbCrLf & vbCrLf
sText = sText & "System Variables:" & vbCrLf

sText = sText & "Speed of Sound = " & SoundSpeed & " ft/sec"

frmSummary . tbxSummary.Text = sText

frmSummary .ShowDialog()

End Sub

5
&
sText & "Calculated NeckRadius = " & tbxGNeckRadius.Text & " in." & vbCrLf
&
1

Private Sub btnPrintIllustration_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnPrintIllustration.Click

Try
AddHandler PrintDocumentl.PrintPage, AddressOf Me.PrintGraphic
PrintDocumentl.Print()

Catch ex As Exception
MessageBox.Show("Sorry--there is a problem printing", _

ex.ToString())
| End Try

End Sub

Private Sub PrintGraphic(ByVal sender As Object, _
ByVal ev As PrintPageEventArgs)
ev.Graphics.DravImage (pbxGeom.Image, ev.Graphics.VisibleClipBounds)
ev.HasMorePages = False

End Sub
Private Function FOmega(ByVal NeckCavityRatio As Double, ByVal Alphan As Double, _
ByVal Omega As Double)

FOmega = (1.0 + NeckCavityRatio) * Cos(Omega) - _
(1.0 - NeckCavityRatio) * Cos((2.0 * Alphan - 1.0) * Omega)

155




End Function

Private Function FpOmega(ByVal NeckCavityRatio As Double, ByVal Alphan As Double, _
ByVal Omega As Double)

FpOmega = -(1.0 + NeckCavityRatio) * Sin(Omega) + (1.0 - NeckCavityRatio) * _
(2.0 * Alphan - 1.0) * Sin(Omega * (2.0 * Alphan - 1.0))

End Function

Private Sub OmegaSolve(ByVal NeckCavityRatio As Double, ByVal Alphan As Double, _
ByRef Omega As Double, ByRef iErr As Boolean)

Dim DeltaConv, Deltalmega, OmegaTmp, OmegaTmpNew As Double
Dim iCount As Intié

DeltaConv = 0.00000001
Deltalmega = 999.0
iCount = O

iErr = False

OmegaTmp = Omega

Do While ((DeltaOmega > DeltaConv) And (Not iErr))
OmegaTmpNew = OmegaTmp - (FOmega(NeckCavityRatio, Alphan, OmegaTmp) / _
FpOmega(NeckCavityRatio, Alphan, Omega))
iCount = iCount + 1
If iCount > 20 Then
iErr = True
Else
Deltalmega = Abs(OmegaTmpNew - OmegaTmp) / OmegaTmp
OmegaTmp = OmegaTmpNew
End If
Loop

If Not iExr Then
Omega = OmegaTmpNew
Else

End If
End Sud

Private Sub tbxGFreqRef_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles
tbxGFreqRef .TextChanged

If Not IsNumeric(tbxGFreqRef.Text) Then
If tbxGFreqRef.Text <> "." Then

tbxGFreqRhef .Text = ""

End If

Else
FreqRefG = tbxGFreqRef.Text

End If

End Sub

End Class




